科研成果详情

题名Moderately-Balanced Representation Learning for Treatment Effects with Orthogonality Information
作者
发表日期2022
会议名称19th Pacific Rim International Conference on Artificial Intelligence (PRICAI)
会议录名称PRICAI 2022: Trends in Artificial Intelligence: 19th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2022, Shanghai, China, November 10–13, 2022, Proceedings, Part II
会议录编者Sankalp Khanna, Jian Cao, Quan Bai, Guandong Xu
ISBN978-3-031-20864-5
ISSN0302-9743
卷号Lecture Notes in Computer Science (LNCS,volume 13630)
页码3-16
会议日期November 10–13, 2022
会议地点Shanghai, China
出版地Cham
出版者Springer
摘要

Estimating the average treatment effect (ATE) from observational data is challenging due to selection bias. Existing works mainly tackle this challenge in two ways. Some researchers propose constructing a score function that satisfies the orthogonal condition, which guarantees that the established ATE estimator is “orthogonal" to be more robust. The others explore representation learning models to achieve a balanced representation between the treated and the controlled groups. However, existing studies fail to 1) discriminate treated units from controlled ones in the representation space to avoid the over-balanced issue; 2) fully utilize the “orthogonality information". In this paper, we propose a moderately-balanced representation learning (MBRL) framework based on recent covariates balanced representation learning methods and orthogonal machine learning theory. This framework protects the representation from being over-balanced via multi-task learning. Simultaneously, MBRL incorporates the noise orthogonality information in the training and validation stages to achieve a better ATE estimation. The comprehensive experiments on benchmark and simulated datasets show the superiority and robustness of our method on treatment effect estimations compared with existing state-of-the-art methods.

关键词Causal inference Representation learning Treatment effects
DOI10.1007/978-3-031-20865-2_1
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号WOS:000899329500001
Scopus入藏号2-s2.0-85142893826
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11666
专题理工科技学院
通讯作者Wu, Qi
作者单位
1.School of Data Science,City University of Hong Kong,Hong Kong
2.Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College,Zhuhai,China
3.JD Digits,Beijing,China
推荐引用方式
GB/T 7714
Huang, Yiyan,Leung, Cheuk Hang,Ma, Shuminet al. Moderately-Balanced Representation Learning for Treatment Effects with Orthogonality Information[C]//Sankalp Khanna, Jian Cao, Quan Bai, Guandong Xu. Cham: Springer, 2022: 3-16.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huang, Yiyan]的文章
[Leung, Cheuk Hang]的文章
[Ma, Shumin]的文章
百度学术
百度学术中相似的文章
[Huang, Yiyan]的文章
[Leung, Cheuk Hang]的文章
[Ma, Shumin]的文章
必应学术
必应学术中相似的文章
[Huang, Yiyan]的文章
[Leung, Cheuk Hang]的文章
[Ma, Shumin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。