科研成果详情

题名Robust Causal Learning for the Estimation of Average Treatment Effects
作者
发表日期2022
会议名称2022 International Joint Conference on Neural Networks (IJCNN)
会议录名称2022 International Joint Conference on Neural Networks (IJCNN): 2022 Conference Proceedings
ISBN978-1-7281-8671-9
卷号2022-July
会议日期18-23 July 2022
会议地点Padua, Italy
出版者IEEE
摘要

Many practical decision-making problems in economics and healthcare seek to estimate the average treatment effect (ATE) from observational data. The Double/Debiased Machine Learning (DML) is one of the prevalent methods to estimate ATE in the observational study. However, the DML estimators can suffer an error-compounding issue and even give an extreme estimate when the propensity scores are misspecified or very close to 0 or 1. Previous studies have overcome this issue through some empirical tricks such as propensity score trimming, yet none of the existing literature solves this problem from a theoretical standpoint. In this paper, we propose a Robust Causal Learning (RCL) method to offset the deficiencies of the DML estimators. Theoretically, the RCL estimators i) are as consistent and doubly robust as the DML estimators, and ii) can get rid of the error-compounding issue. Empirically, the comprehensive experiments show that i) the RCL estimators give more stable estimations of the causal parameters than the DML estimators, and ii) the RCL estimators outperform the traditional estimators and their variants when applying different machine learning models on both simulation and benchmark datasets.

关键词causal inference economics healthcare treatment effect estimation
DOI10.1109/IJCNN55064.2022.9892344
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science ; Engineering ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Neurosciences
WOS记录号WOS:000867070903103
Scopus入藏号2-s2.0-85140732118
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11667
专题理工科技学院
通讯作者Wu, Qi
作者单位
1.School of Data Science,The City University of Hong Kong
2.Institute of Statistics and Big Data,Renmin University of China
3.Division of Science and Technology,BNU-HKBU United International College
4.Jd Digits-CityU Joint Lab,The City University of Hong Kong
5.Jd Digits
推荐引用方式
GB/T 7714
Huang, Yiyan,Leung, Cheuk Hang,Wu, Qiet al. Robust Causal Learning for the Estimation of Average Treatment Effects[C]: IEEE, 2022.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huang, Yiyan]的文章
[Leung, Cheuk Hang]的文章
[Wu, Qi]的文章
百度学术
百度学术中相似的文章
[Huang, Yiyan]的文章
[Leung, Cheuk Hang]的文章
[Wu, Qi]的文章
必应学术
必应学术中相似的文章
[Huang, Yiyan]的文章
[Leung, Cheuk Hang]的文章
[Wu, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。