发表状态 | 已发表Published |
题名 | Nash’s Existence Theorem for Non-Compact Strategy Sets † |
作者 | |
发表日期 | 2024-07-01 |
发表期刊 | Mathematics
![]() |
ISSN/eISSN | 2227-7390 |
卷号 | 12期号:13 |
摘要 | In this paper, we apply the classical FKKM lemma to obtain the Ky Fan minimax inequality defined on nonempty non-compact convex subsets in reflexive Banach spaces, and then we apply it to game theory and obtain Nash’s existence theorem for non-compact strategy sets, which can be regarded as a new, simple but interesting application of the FKKM lemma and the Ky Fan minimax inequality, and we can also present another proof about the famous John von Neumann’s existence theorem in two-player zero-sum games. Due to the results of Li, Shi and Chang, the coerciveness in the conclusion can be replaced with the P.S. or G.P.S. conditions. |
关键词 | game theory Ky Fan inequality Nash equilibrium two-player zero-sum game |
DOI | 10.3390/math12132017 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics |
WOS记录号 | WOS:001269724700001 |
Scopus入藏号 | 2-s2.0-85198412166 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/11742 |
专题 | 北师香港浸会大学 |
通讯作者 | Yang, Chunyan |
作者单位 | 1.Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai,519087,China 2.Division of Mathematics,Sichuan University Jinjiang College,Pengshan,620860,China 3.School of Economics,Chongqing Technology and Business University,Chongqing,400067,China 4.School of Mathematics,Sichuan University,Chengdu,610065,China |
第一作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Zhang, Xinyu,Yang, Chunyan,Han, Renjieet al. Nash’s Existence Theorem for Non-Compact Strategy Sets †[J]. Mathematics, 2024, 12(13). |
APA | Zhang, Xinyu, Yang, Chunyan, Han, Renjie, & Zhang, Shiqing. (2024). Nash’s Existence Theorem for Non-Compact Strategy Sets †. Mathematics, 12(13). |
MLA | Zhang, Xinyu,et al."Nash’s Existence Theorem for Non-Compact Strategy Sets †". Mathematics 12.13(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论