科研成果详情

发表状态已发表Published
题名EFFICIENT AND EFFECTIVE CALIBRATION OF NUMERICAL MODEL OUTPUTS USING HIERARCHICAL DYNAMIC MODELS
作者
发表日期2024-06-01
发表期刊Annals of Applied Statistics
ISSN/eISSN1932-6157
卷号18期号:2页码:1064-1089
摘要

Numerical air quality models, such as the Community Multiscale Air Quality (CMAQ) system, play a critical role in characterizing pollution levels at fine spatial and temporal scales. The model outputs, however, tend to systematically over-or underestimate the real pollutant concentrations. In this study we propose a Bayesian hierarchical dynamic model to calibrate large-scale grid-level CMAQ model outputs using data from other sources, especially point-level observations from sparsely located monitoring stations. In our model a stochastic integro-differential equation (IDE) is implemented to account for space-time interactions of air pollutants. To better approximate the spatial pattern of pollutants, we employ nonregular meshes to discretize IDEs. A spatial partitioning procedure is embedded to improve the scalability of the approach for very large meshes. An algorithm based on variational Bayes and ensemble Kalman smoother is developed to accelerate the parameter estimation and calibration procedure. We apply the proposed approach to calibrate CMAQ outputs for China’s Beijing–Tianjin–Hebei region. In contrast to existing methods, the proposed approach captures space-time interactions, produces more accurate calibration results, and operates at a higher computational efficiency. A reanalysis dataset is also adopted to demonstrate the effectiveness and efficiency of our approach to large spatial data.

关键词Calibration hierarchical dynamic models numerical model outputs space-partitioning-based ensemble Kalman smoother stochastic integro-differential equations variational Bayes
DOI10.1214/23-AOAS1823
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:001202404100035
Scopus入藏号2-s2.0-85190874916
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11766
专题北师香港浸会大学
作者单位
1.College of Public Health,University of Georgia,United States
2.College of Business,Oregon State University,United States
3.Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College,China
4.Center for Applied Statistics and School of Statistics,Renmin University of China,China
推荐引用方式
GB/T 7714
Chen, Yewen,Chang, Xiaohui,Zhang, Bohaiet al. EFFICIENT AND EFFECTIVE CALIBRATION OF NUMERICAL MODEL OUTPUTS USING HIERARCHICAL DYNAMIC MODELS[J]. Annals of Applied Statistics, 2024, 18(2): 1064-1089.
APA Chen, Yewen, Chang, Xiaohui, Zhang, Bohai, & Huang, Hui. (2024). EFFICIENT AND EFFECTIVE CALIBRATION OF NUMERICAL MODEL OUTPUTS USING HIERARCHICAL DYNAMIC MODELS. Annals of Applied Statistics, 18(2), 1064-1089.
MLA Chen, Yewen,et al."EFFICIENT AND EFFECTIVE CALIBRATION OF NUMERICAL MODEL OUTPUTS USING HIERARCHICAL DYNAMIC MODELS". Annals of Applied Statistics 18.2(2024): 1064-1089.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Yewen]的文章
[Chang, Xiaohui]的文章
[Zhang, Bohai]的文章
百度学术
百度学术中相似的文章
[Chen, Yewen]的文章
[Chang, Xiaohui]的文章
[Zhang, Bohai]的文章
必应学术
必应学术中相似的文章
[Chen, Yewen]的文章
[Chang, Xiaohui]的文章
[Zhang, Bohai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。