科研成果详情

发表状态已发表Published
题名Exploring the factor zoo with a machine-learning portfolio
作者
发表日期2024-11-01
发表期刊International Review of Financial Analysis
ISSN/eISSN1057-5219
卷号96
摘要

With the growing reliance on machine-learning (ML) methods in finance, an understanding of their long-term efficacy and underlying mechanism is needed. We document the time-varying importance of different stock characteristics over an 18-year (1998–2016) out-of-sample period to determine whether ML models, when trained on a large set of firm and trading characteristics, can consistently outperform factor models. Utilizing a combination of linear and nonlinear models, we form a ML portfolio that consistently generates a significant alpha against factor models, ranging from 2.14 to 2.74% per month. We uncover patterns in characteristic dominance that alternates between arbitrage and financial constraint features. The variation correlates with the US credit cycle, and highlights a fundamental economic mechanism underlying the ML portfolio's performance. The study's impact extends to both academics and practitioners, providing insights into the economic drivers of stock returns and the practical implementation of ML methods in portfolio construction.

关键词Factor model Firm characteristic Return predictability
DOI10.1016/j.irfa.2024.103599
URL查看来源
收录类别SSCI
语种英语English
WOS研究方向Business & Economics
WOS类目Business, Finance
WOS记录号WOS:001335384500001
Scopus入藏号2-s2.0-85206115353
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11945
专题工商管理学院
通讯作者Chng, Michael T.
作者单位
1.Shenzhen Audencia Financial Technology Institute,Shenzhen University,and Department of Finance,Hong Kong University of Science and Technology,Hong Kong,China
2.Faculty of Business Management,Beijing Normal University-Hong Kong Baptist University United International College,China
3.Department of Finance,International Business School Suzhou (IBSS),Xi'an Jiaotong-Liverpool University (XJTLU),China
推荐引用方式
GB/T 7714
Sak, Halis,Huang, Tao,Chng, Michael T. Exploring the factor zoo with a machine-learning portfolio[J]. International Review of Financial Analysis, 2024, 96.
APA Sak, Halis, Huang, Tao, & Chng, Michael T. (2024). Exploring the factor zoo with a machine-learning portfolio. International Review of Financial Analysis, 96.
MLA Sak, Halis,et al."Exploring the factor zoo with a machine-learning portfolio". International Review of Financial Analysis 96(2024).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Sak, Halis]的文章
[Huang, Tao]的文章
[Chng, Michael T.]的文章
百度学术
百度学术中相似的文章
[Sak, Halis]的文章
[Huang, Tao]的文章
[Chng, Michael T.]的文章
必应学术
必应学术中相似的文章
[Sak, Halis]的文章
[Huang, Tao]的文章
[Chng, Michael T.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。