发表状态 | 已发表Published |
题名 | Adaptive video supervoxel segmentation via energy-guided bottom-up clustering |
作者 | |
发表日期 | 2025-03-01 |
发表期刊 | Signal, Image and Video Processing
![]() |
ISSN/eISSN | 1863-1703 |
卷号 | 19期号:3 |
摘要 | Video supervoxel segmentation is a critical technique in computer vision, facilitating accurate object segmentation and boundary detection in video analysis. Current methods often struggle to balance segmentation accuracy with computational efficiency. This paper proposes an adaptive supervoxel segmentation method for videos, guided by energy-driven bottom-up clustering. By treating each pixel as a potential supervoxel and iteratively merging them based on segmentation energy, our method efficiently generates supervoxels of varying sizes that align well with object boundaries. An optimization algorithm further refines the supervoxels, enhancing shape regularity and boundary smoothness. Extensive comparisons with traditional and deep learning-based methods demonstrate the superior performance of our approach in terms of segmentation accuracy, boundary preservation, and efficiency. The proposed method holds promise for practical applications in video analysis and understanding. |
关键词 | Clustering Octree Supervoxels Video segmentation |
DOI | 10.1007/s11760-024-03745-6 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Engineering ; Imaging Science & Photographic Technology |
WOS类目 | Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:001398315900030 |
Scopus入藏号 | 2-s2.0-85217825397 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/12499 |
专题 | 理工科技学院 |
通讯作者 | Yang, Baorong |
作者单位 | 1.Guangdong Provincial/Zhuhai Key Laboratory of IRADS,Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai,China 2.College of Computer Engineering,Jimei University,Xiamen,China 3.School of Informatics,Xiamen University,Xiamen,China 4.Department of Computer Science,The University of Texas at Dallas,Richardson,United States |
第一作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Dong, Xiao,Zhong, Zhijie,Fan, Wentaoet al. Adaptive video supervoxel segmentation via energy-guided bottom-up clustering[J]. Signal, Image and Video Processing, 2025, 19(3). |
APA | Dong, Xiao, Zhong, Zhijie, Fan, Wentao, Chen, Zhonggui, Guo, Xiaohu, & Yang, Baorong. (2025). Adaptive video supervoxel segmentation via energy-guided bottom-up clustering. Signal, Image and Video Processing, 19(3). |
MLA | Dong, Xiao,et al."Adaptive video supervoxel segmentation via energy-guided bottom-up clustering". Signal, Image and Video Processing 19.3(2025). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论