科研成果详情

发表状态已发表Published
题名Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings
作者
发表日期2025-03-01
发表期刊Neural Networks
ISSN/eISSN0893-6080
卷号183
摘要

This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information.

关键词Clustering Data augmentation Gamma mixture models VAE Variational inference
DOI10.1016/j.neunet.2024.106979
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:001383683500001
Scopus入藏号2-s2.0-85211339866
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/12502
专题理工科技学院
通讯作者Guo,Jiaxun
作者单位
1.CIISE,Concordia University,Montreal,H3G 1T7,Canada
2.Guangdong Provincial Key Laboratory IRADS and Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai,Guangdong,China
推荐引用方式
GB/T 7714
Guo,Jiaxun,Fan,Wentao,Amayri,Manaret al. Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings[J]. Neural Networks, 2025, 183.
APA Guo,Jiaxun, Fan,Wentao, Amayri,Manar, & Bouguila,Nizar. (2025). Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings. Neural Networks, 183.
MLA Guo,Jiaxun,et al."Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings". Neural Networks 183(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Guo,Jiaxun]的文章
[Fan,Wentao]的文章
[Amayri,Manar]的文章
百度学术
百度学术中相似的文章
[Guo,Jiaxun]的文章
[Fan,Wentao]的文章
[Amayri,Manar]的文章
必应学术
必应学术中相似的文章
[Guo,Jiaxun]的文章
[Fan,Wentao]的文章
[Amayri,Manar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。