科研成果详情

发表状态已发表Published
题名MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network
作者
发表日期2025-02-01
发表期刊Bioinformatics
ISSN/eISSN1367-4803
卷号41期号:2
摘要

Motivation: The increasing accessibility of large-scale protein sequences through advanced sequencing technologies has necessitated the development of efficient and accurate methods for predicting protein function. Computational prediction models have emerged as a promising solution to expedite the annotation process. However, despite making significant progress in protein research, graph neural networks face challenges in capturing long-range structural correlations and identifying critical residues in protein graphs. Furthermore, existing models have limitations in effectively predicting the function of newly sequenced proteins that are not included in protein interaction networks. This highlights the need for novel approaches integrating protein structure and sequence data. Results: We introduce Multi-scalE Graph Adaptive neural network (MEGA-GO), highlighting the capability of capturing diverse protein sequence length features from multiple scales. The unique graph adaptive neural network architecture of MEGA-GO enables a more nuanced extraction of graph structure features, effectively capturing intricate relationships within biological data. Experimental results demonstrate that MEGA-GO outperforms mainstream protein function prediction models in the accuracy of Gene Ontology term classification, yielding 33.4%, 68.9%, and 44.6% of area under the precision-recall curve on biological process, molecular function, and cellular component domains, respectively. The rest of the experimental results reveal that our model consistently surpasses the state-of-the-art methods.

DOI10.1093/bioinformatics/btaf032
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
WOS类目Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号WOS:001416813100001
Scopus入藏号2-s2.0-85217805358
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/12511
专题理工科技学院
通讯作者Chen, Jiaxing
作者单位
1.Guangdong Provincial Key Laboratory IRADS,Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai,519087,China
2.Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai,519087,China
3.Department of Computer Science and Technology,Guangdong University of Technology,Guangzhou,510520,China
4.Department of Science of Chinese Materia Medica,Guangdong Medical University,Dongguan,524023,China
5.Department of Computer Science,City University of Hong Kong,Hong Kong
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Lee, Yujian,Gao, Peng,Xu, Yongqiet al. MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network[J]. Bioinformatics, 2025, 41(2).
APA Lee, Yujian, Gao, Peng, Xu, Yongqi, Wang, Ziyang, Li, Shuaicheng, & Chen, Jiaxing. (2025). MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network. Bioinformatics, 41(2).
MLA Lee, Yujian,et al."MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network". Bioinformatics 41.2(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lee, Yujian]的文章
[Gao, Peng]的文章
[Xu, Yongqi]的文章
百度学术
百度学术中相似的文章
[Lee, Yujian]的文章
[Gao, Peng]的文章
[Xu, Yongqi]的文章
必应学术
必应学术中相似的文章
[Lee, Yujian]的文章
[Gao, Peng]的文章
[Xu, Yongqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。