科研成果详情

发表状态已发表Published
题名A novel bidirectional LSTM network model for very high cycle random fatigue performance of CFRP composite thin plates
作者
发表日期2025
发表期刊International Journal of Fatigue
ISSN/eISSN0142-1123
卷号190
摘要

This study proposes a novel Double-layer Bidirectional Long Short-Term Memory (BiLSTM) neural network model, shorted as TDA-BiLSTM, which integrates Transfer learning and Attention mechanisms. The model aims to predict the fatigue life of carbon fiber reinforced polymer (CFRP) thin plate structures subjected to very high cycle random vibration fatigue loads. Distinct from conventional servo-hydraulic and ultrasonic fatigue testing methods, this research pioneers the use of a vibration table for very high cycle fatigue (VHCF) testing to fill the gap in the field. By training and validating data across various life ranges, the TDA-BiLSTM model demonstrates significant advantages in training speed and predicting accuracy. Its bidirectional structure and attention mechanism effectively capture complex patterns and long-term dependencies in sequence data. Experimental results indicate that the TDA-BiLSTM model achieves significantly lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) compared to Long Short-Term Memory (LSTM) and Long Short-Term Memory with Transfer learning (Tr-LSTM) models across different life ranges on the ε-N curve, indicating higher accuracy and stability in strain life prediction tasks. Additionally, an analysis of typical damage areas using Scanning Electron Microscopy (SEM) reveals the failure mechanisms of CFRP plates under very high cycle vibration fatigue loads.

关键词Attention mechanism Bi-LSTM Random vibration Transfer learning VHCF
DOI10.1016/j.ijfatigue.2024.108627
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Engineering ; Materials Science
WOS类目Engineering, Mechanical ; Materials Science, Multidisciplinary
WOS记录号WOS:001338815100001
Scopus入藏号2-s2.0-85206459297
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/12549
专题北师香港浸会大学
通讯作者Zhou, Guangming
作者单位
1.State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,China
2.Office of Communications & Public Relations,Southern University of Science and Technology,Shenzhen,518055,China
3.Beijing Normal University—Hong Kong Baptist University United International College (UIC),Zhuhai,519000,China
推荐引用方式
GB/T 7714
Jian, Yueao,Hu, Peng,Zhou, Qihanet al. A novel bidirectional LSTM network model for very high cycle random fatigue performance of CFRP composite thin plates[J]. International Journal of Fatigue, 2025, 190.
APA Jian, Yueao., Hu, Peng., Zhou, Qihan., Zhang, Nan., Cai, Deng'an., .. & Wang, Xinwei. (2025). A novel bidirectional LSTM network model for very high cycle random fatigue performance of CFRP composite thin plates. International Journal of Fatigue, 190.
MLA Jian, Yueao,et al."A novel bidirectional LSTM network model for very high cycle random fatigue performance of CFRP composite thin plates". International Journal of Fatigue 190(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jian, Yueao]的文章
[Hu, Peng]的文章
[Zhou, Qihan]的文章
百度学术
百度学术中相似的文章
[Jian, Yueao]的文章
[Hu, Peng]的文章
[Zhou, Qihan]的文章
必应学术
必应学术中相似的文章
[Jian, Yueao]的文章
[Hu, Peng]的文章
[Zhou, Qihan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。