科研成果详情

发表状态已发表Published
题名Unsupervised image categorization based on deep generative models with disentangled representations and von Mises-Fisher distributions
作者
发表日期2025
发表期刊International Journal of Machine Learning and Cybernetics
ISSN/eISSN1868-8071
卷号16期号:1页码:611-623
摘要

Variational autoencoders (VAEs) have emerged as powerful deep generative models for learning abstract representations in the latent space, making them highly applicable across diverse domains. This paper presents a novel image categorization approach that leverages VAEs with disentangled representations. In VAE-based clustering models, the latent representations learned by encoders often combine both generation and clustering information. To address this concern, our proposed model disentangles the acquired latent representations into dedicated clustering and generation modules, thereby enhancing the performance and efficiency of clustering tasks. Specifically, we introduce an extension of the Kullback–Leibler (KL) divergence to promote independence between these two modules. Additionally, we incorporate the von Mises-Fisher (vMF) distribution to improve the clustering model's ability to capture cluster characteristics within the generation module. Extensive experimental evaluations confirm the effectiveness of our model in clustering tasks, notably without the requirement for pre-training. Furthermore, when compared to various deep generative clustering models requiring pre-training, our model is able to achieve either comparable or superior performance across multiple datasets.

关键词Clustering Disentangling module Variational autoencoder (VAE) vMF distribution
DOI10.1007/s13042-024-02265-6
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001252533900002
Scopus入藏号2-s2.0-85196663068
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/12550
专题理工科技学院
通讯作者Fan, Wentao
作者单位
1.Guangdong Provincial Key Laboratory IRADS and Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College (UIC),Zhuhai,Guangdong,China
2.Department of Computer Science and Technology,Huaqiao University,Xiamen,China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Fan, Wentao,Xu, Kunxiong. Unsupervised image categorization based on deep generative models with disentangled representations and von Mises-Fisher distributions[J]. International Journal of Machine Learning and Cybernetics, 2025, 16(1): 611-623.
APA Fan, Wentao, & Xu, Kunxiong. (2025). Unsupervised image categorization based on deep generative models with disentangled representations and von Mises-Fisher distributions. International Journal of Machine Learning and Cybernetics, 16(1), 611-623.
MLA Fan, Wentao,et al."Unsupervised image categorization based on deep generative models with disentangled representations and von Mises-Fisher distributions". International Journal of Machine Learning and Cybernetics 16.1(2025): 611-623.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Xu, Kunxiong]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Xu, Kunxiong]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Xu, Kunxiong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。