发表状态 | 已发表Published |
题名 | Unsupervised image categorization based on deep generative models with disentangled representations and von Mises-Fisher distributions |
作者 | |
发表日期 | 2025 |
发表期刊 | International Journal of Machine Learning and Cybernetics
![]() |
ISSN/eISSN | 1868-8071 |
卷号 | 16期号:1页码:611-623 |
摘要 | Variational autoencoders (VAEs) have emerged as powerful deep generative models for learning abstract representations in the latent space, making them highly applicable across diverse domains. This paper presents a novel image categorization approach that leverages VAEs with disentangled representations. In VAE-based clustering models, the latent representations learned by encoders often combine both generation and clustering information. To address this concern, our proposed model disentangles the acquired latent representations into dedicated clustering and generation modules, thereby enhancing the performance and efficiency of clustering tasks. Specifically, we introduce an extension of the Kullback–Leibler (KL) divergence to promote independence between these two modules. Additionally, we incorporate the von Mises-Fisher (vMF) distribution to improve the clustering model's ability to capture cluster characteristics within the generation module. Extensive experimental evaluations confirm the effectiveness of our model in clustering tasks, notably without the requirement for pre-training. Furthermore, when compared to various deep generative clustering models requiring pre-training, our model is able to achieve either comparable or superior performance across multiple datasets. |
关键词 | Clustering Disentangling module Variational autoencoder (VAE) vMF distribution |
DOI | 10.1007/s13042-024-02265-6 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:001252533900002 |
Scopus入藏号 | 2-s2.0-85196663068 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/12550 |
专题 | 理工科技学院 |
通讯作者 | Fan, Wentao |
作者单位 | 1.Guangdong Provincial Key Laboratory IRADS and Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College (UIC),Zhuhai,Guangdong,China 2.Department of Computer Science and Technology,Huaqiao University,Xiamen,China |
第一作者单位 | 北师香港浸会大学 |
通讯作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Fan, Wentao,Xu, Kunxiong. Unsupervised image categorization based on deep generative models with disentangled representations and von Mises-Fisher distributions[J]. International Journal of Machine Learning and Cybernetics, 2025, 16(1): 611-623. |
APA | Fan, Wentao, & Xu, Kunxiong. (2025). Unsupervised image categorization based on deep generative models with disentangled representations and von Mises-Fisher distributions. International Journal of Machine Learning and Cybernetics, 16(1), 611-623. |
MLA | Fan, Wentao,et al."Unsupervised image categorization based on deep generative models with disentangled representations and von Mises-Fisher distributions". International Journal of Machine Learning and Cybernetics 16.1(2025): 611-623. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Fan, Wentao]的文章 |
[Xu, Kunxiong]的文章 |
百度学术 |
百度学术中相似的文章 |
[Fan, Wentao]的文章 |
[Xu, Kunxiong]的文章 |
必应学术 |
必应学术中相似的文章 |
[Fan, Wentao]的文章 |
[Xu, Kunxiong]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论