题名 | Clustering-Based Online News Topic Detection and Tracking through Hierarchical Bayesian Nonparametric Models |
作者 | |
发表日期 | 2021-07-11 |
会议名称 | 44th International ACM SIGIR Conference on Research and Development in Information Retrieval |
会议录名称 | SIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
![]() |
页码 | 2126-2130 |
会议日期 | JUL 11-15, 2021 |
会议地点 | ELECTR NETWORK |
摘要 | In this paper, we propose a clustering-based online news topic detection and tracking (TDT) approach based on hierarchical Bayesian nonparametric framework that allows topics to be shared across different news stories in a corpus. Our approach is formulated using the hierarchical Pitman-Yor process mixture model with the inverted Beta-Liouville (IBL) distribution as its component density, which has shown superior performance in modeling text data than the widely used Gaussian distribution. Moreover, we theoretically develop a convergence-guaranteed online learning algorithm that can effectively learn the proposed TDT model from a stream of news stories based on varational Bayes. The merits of our TDT approach are illustrated by comparing it with other well-defined clustering-based TDT approaches on different news data sets. |
关键词 | clustering hierarchical Bayesian model topic detection and tracking |
DOI | 10.1145/3404835.3462982 |
URL | 查看来源 |
收录类别 | CPCI-S |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Information Systems |
WOS记录号 | WOS:000719807900260 |
Scopus入藏号 | 2-s2.0-85111682833 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13029 |
专题 | 个人在本单位外知识产出 理工科技学院 |
作者单位 | 1.Department of Computer Science and Technology,Huaqiao University,Xiamen,Fujian,China 2.Ciise,Concordia University,Montreal,Canada 3.Instrumental Analysis Center,Huaqiao University,Xiamen,Fujian,China |
推荐引用方式 GB/T 7714 | Fan, Wentao,Guo, Zhiyan,Bouguila, Nizaret al. Clustering-Based Online News Topic Detection and Tracking through Hierarchical Bayesian Nonparametric Models[C], 2021: 2126-2130. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论