科研成果详情

题名Learning Discriminative Joint Embeddings for Efficient Face and Voice Association
作者
发表日期2020-07-25
会议名称43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
会议录名称SIGIR 2020 - Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval
页码1881-1884
会议日期JUL 25-30, 2020
会议地点ELECTR NETWORK
摘要

Many cognitive researches have shown the natural possibility of face-voice association, and such potential association has attracted much attention in biometric cross-modal retrieval domain. Nevertheless, the existing methods often fail to explicitly learn the common embeddings for challenging face-voice association tasks. In this paper, we present to learn discriminative joint embedding for face-voice association, which can seamlessly train the face subnetwork and voice subnetwork to learn their high-level semantic features, while correlating them to be compared directly and efficiently. Within the proposed approach, we introduce bi-directional ranking constraint, identity constraint and center constraint to learn the joint face-voice embedding, and adopt bi-directional training strategy to train the deep correlated face-voice model. Meanwhile, an online hard negative mining technique is utilized to discriminatively construct hard triplets in a mini-batch manner, featuring on speeding up the learning process. Accordingly, the proposed approach is adaptive to benefit various face-voice association tasks, including cross-modal verification, 1:2 matching, 1:N matching, and retrieval scenarios. Extensive experiments have shown its improved performances in comparison with the state-of-the-art ones.

关键词bi-directional ranking constraint cross-modal verification discriminative joint embedding face-voice association
DOI10.1145/3397271.3401302
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000722377700251
Scopus入藏号2-s2.0-85090137902
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13047
专题个人在本单位外知识产出
理工科技学院
作者单位
1.Huaqiao University and Xidian University,Xiamen,China
2.Huaqiao University,Xidian University,Hong Kong Baptist University,Xiamen,China
3.Hong Kong Baptist Univeristy,Hong Kong,Hong Kong
4.Xidian University,Xian,China
推荐引用方式
GB/T 7714
Wang, Rui,Liu, Xin,Cheung, Yiuminget al. Learning Discriminative Joint Embeddings for Efficient Face and Voice Association[C], 2020: 1881-1884.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Rui]的文章
[Liu, Xin]的文章
[Cheung, Yiuming]的文章
百度学术
百度学术中相似的文章
[Wang, Rui]的文章
[Liu, Xin]的文章
[Cheung, Yiuming]的文章
必应学术
必应学术中相似的文章
[Wang, Rui]的文章
[Liu, Xin]的文章
[Cheung, Yiuming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。