科研成果详情

题名Semi-supervised semantic-preserving hashing for efficient cross-modal retrieval
作者
发表日期2019-07-01
会议名称IEEE International Conference on Multimedia and Expo (ICME)
会议录名称Proceedings - IEEE International Conference on Multimedia and Expo
ISSN1945-7871
卷号2019-July
页码1006-1011
会议日期JUL 08-12, 2019
会议地点Shanghai, PEOPLES R CHINA
摘要

Cross-modal hashing has recently gained significant popularity to facilitate retrieval across different modalities. With limited label available, this paper presents a novel Semi-Supervised Semantic-Preserving Hashing (S3PH) for flexible cross-modal retrieval. In contrast to most semi-supervised cross-modal hashing works that need to predict the label of unlabeled data, our proposed approach groups the labeled and unlabeled data together, and integrates the relaxed latent subspace learning and semantic-preserving regularization across different modalities. Accordingly, an efficient relaxed objective function is proposed to learn the latent subspaces for both labeled and unlabeled data. Further, an orthogonal rotation matrix is efficiently learned to transform the latent subspace to hash space by minimizing the quantization error. Without sacrificing the retrieval performance, the proposed S3PH method can benefit various kinds of retrieval tasks, i.e., unsupervised, semi-supervised and supervised. Experimental results compared with several competitive algorithms show the effectiveness of the proposed method and its superiority over state-of-the-arts.

关键词Orthogonal rotation matrix Semantic-preserving Semi-supervised Cross-modal hashing
DOI10.1109/ICME.2019.00177
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000501820600169
Scopus入藏号2-s2.0-85071008611
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13056
专题个人在本单位外知识产出
理工科技学院
通讯作者Liu, Xin
作者单位
1.Department of Computer Science and Technology,Huaqiao University,Xiamen,361021,China
2.State Key Laboratory of Integrated Services Networks,School of Telecommunications Engineering,Xidian University,Xi'an,710071,China
推荐引用方式
GB/T 7714
Wang, Xingzhi,Liu, Xin,Hu, Zhikaiet al. Semi-supervised semantic-preserving hashing for efficient cross-modal retrieval[C], 2019: 1006-1011.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Xingzhi]的文章
[Liu, Xin]的文章
[Hu, Zhikai]的文章
百度学术
百度学术中相似的文章
[Wang, Xingzhi]的文章
[Liu, Xin]的文章
[Hu, Zhikai]的文章
必应学术
必应学术中相似的文章
[Wang, Xingzhi]的文章
[Liu, Xin]的文章
[Hu, Zhikai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。