科研成果详情

题名Unsupervised Disentanglement Learning via Dirichlet Variational Autoencoder
作者
发表日期2023
会议名称36th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE)
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN9783031368189
ISSN0302-9743
卷号13925 LNAI
页码341-352
会议日期JUL 19-22, 2023
会议地点Shanghai, PEOPLES R CHINA
摘要

Unsupervised disentanglement learning is the process of discovering factorized variables that include interpretable semantic information and encode separate factors of variations in the data. It is a critical learning problem and has been applied in various tasks and domains. Most of the existing unsupervised disentanglement learning methods are based on the variational autoencoder (VAE) and adopt Gaussian distribution as the prior over the latent space. However, these methods suffer from a collapse of the decoder weights, which leads to degraded disentangling ability, due to the Gaussian prior. To address this issue, in this paper we propose a novel unsupervised disentanglement learning method based on a VAE framework in which the Dirichlet distribution is deployed as the prior over latent space. In our method, the interpretable factorised latent representations can be obtained by balancing the capacity of the latent information channel and the learning of statistically independent latent factors. The effectiveness of our method is validated through experiments on several publicly available datasets.

关键词Dirichlet distribution Disentanglement learning Variational autoencoder
DOI10.1007/978-3-031-36819-6_30
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号WOS:001327651400030
Scopus入藏号2-s2.0-85172422557
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13091
专题理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science and Technology,Huaqiao University,Quanzhou,China
2.Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College (BNU-HKBU UIC),Zhuhai,China
3.Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College,Zhuhai,China
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Xu, Kunxiong,Fan, Wentao,Liu, Xin. Unsupervised Disentanglement Learning via Dirichlet Variational Autoencoder[C], 2023: 341-352.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Kunxiong]的文章
[Fan, Wentao]的文章
[Liu, Xin]的文章
百度学术
百度学术中相似的文章
[Xu, Kunxiong]的文章
[Fan, Wentao]的文章
[Liu, Xin]的文章
必应学术
必应学术中相似的文章
[Xu, Kunxiong]的文章
[Fan, Wentao]的文章
[Liu, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。