发表状态 | 已发表Published |
题名 | Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models with Watson Distributions |
作者 | |
发表日期 | 2022-12-01 |
发表期刊 | IEEE Transactions on Pattern Analysis and Machine Intelligence
![]() |
ISSN/eISSN | 0162-8828 |
卷号 | 44期号:12页码:9654-9668 |
摘要 | This paper aims at proposing an unsupervised hierarchical nonparametric Bayesian framework for modeling axial data (i.e., observations are axes of direction) that can be partitioned into multiple groups, where each observation within a group is sampled from a mixture of Watson distributions with an infinite number of components that are allowed to be shared across different groups. First, we propose a hierarchical nonparametric Bayesian model for modeling grouped axial data based on the hierarchical Pitman-Yor process mixture model of Watson distributions. Then, we demonstrate that by setting the discount parameters of the proposed model to 0, another hierarchical nonparametric Bayesian model based on hierarchical Dirichlet process can be derived for modeling axial data. To learn the proposed models, we systematically develop a closed-form optimization algorithm based on the collapsed variational Bayes (CVB) inference. Furthermore, to ensure the convergence of the proposed learning algorithm, an annealing mechanism is introduced to the framework of CVB inference, leading to an averaged collapsed variational Bayes inference strategy. The merits of the proposed models for modeling grouped axial data are demonstrated through experiments on both synthetic data and real-world applications involving gene expression data clustering and depth image analysis. |
关键词 | Axial data depth image gene clustering hierarchical Dirichlet process hierarchical nonparametric Bayesian model hierarchical Pitman-Yor process variational Bayes Watson distribution |
DOI | 10.1109/TPAMI.2021.3128271 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000880661400078 |
Scopus入藏号 | 2-s2.0-85141893227 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13093 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Fan, Wentao |
作者单位 | 1.Huaqiao University,Department of Computer Science and Technology,Xiamen,361021,China 2.Concordia University,Concordia Institute for Information Systems Engineering (CIISE),Montreal,H3G 1T7,Canada |
推荐引用方式 GB/T 7714 | Fan, Wentao,Yang, Lin,Bouguila, Nizar. Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models with Watson Distributions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9654-9668. |
APA | Fan, Wentao, Yang, Lin, & Bouguila, Nizar. (2022). Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models with Watson Distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9654-9668. |
MLA | Fan, Wentao,et al."Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models with Watson Distributions". IEEE Transactions on Pattern Analysis and Machine Intelligence 44.12(2022): 9654-9668. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论