科研成果详情

发表状态已发表Published
题名Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models with Watson Distributions
作者
发表日期2022-12-01
发表期刊IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN/eISSN0162-8828
卷号44期号:12页码:9654-9668
摘要

This paper aims at proposing an unsupervised hierarchical nonparametric Bayesian framework for modeling axial data (i.e., observations are axes of direction) that can be partitioned into multiple groups, where each observation within a group is sampled from a mixture of Watson distributions with an infinite number of components that are allowed to be shared across different groups. First, we propose a hierarchical nonparametric Bayesian model for modeling grouped axial data based on the hierarchical Pitman-Yor process mixture model of Watson distributions. Then, we demonstrate that by setting the discount parameters of the proposed model to 0, another hierarchical nonparametric Bayesian model based on hierarchical Dirichlet process can be derived for modeling axial data. To learn the proposed models, we systematically develop a closed-form optimization algorithm based on the collapsed variational Bayes (CVB) inference. Furthermore, to ensure the convergence of the proposed learning algorithm, an annealing mechanism is introduced to the framework of CVB inference, leading to an averaged collapsed variational Bayes inference strategy. The merits of the proposed models for modeling grouped axial data are demonstrated through experiments on both synthetic data and real-world applications involving gene expression data clustering and depth image analysis.

关键词Axial data depth image gene clustering hierarchical Dirichlet process hierarchical nonparametric Bayesian model hierarchical Pitman-Yor process variational Bayes Watson distribution
DOI10.1109/TPAMI.2021.3128271
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000880661400078
Scopus入藏号2-s2.0-85141893227
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13093
专题个人在本单位外知识产出
理工科技学院
通讯作者Fan, Wentao
作者单位
1.Huaqiao University,Department of Computer Science and Technology,Xiamen,361021,China
2.Concordia University,Concordia Institute for Information Systems Engineering (CIISE),Montreal,H3G 1T7,Canada
推荐引用方式
GB/T 7714
Fan, Wentao,Yang, Lin,Bouguila, Nizar. Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models with Watson Distributions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9654-9668.
APA Fan, Wentao, Yang, Lin, & Bouguila, Nizar. (2022). Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models with Watson Distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9654-9668.
MLA Fan, Wentao,et al."Unsupervised Grouped Axial Data Modeling via Hierarchical Bayesian Nonparametric Models with Watson Distributions". IEEE Transactions on Pattern Analysis and Machine Intelligence 44.12(2022): 9654-9668.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Yang, Lin]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Yang, Lin]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Yang, Lin]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。