题名 | Efficient cross-modal retrieval via discriminative deep correspondence model |
作者 | |
发表日期 | 2017 |
会议名称 | 2nd CCF Chinese Conference on Computer Vision (CCCV) |
会议录名称 | Communications in Computer and Information Science
![]() |
ISSN | 1865-0929 |
卷号 | 771 |
页码 | 662-673 |
会议日期 | OCT 11-14, 2017 |
会议地点 | China Comp Federat, Tianjin, PEOPLES R CHINA |
摘要 | Cross-modal retrieval has recently drawn much attention due to the widespread existence of multi-modal data, and it generally involves two challenges: how to model the correlations and how to utilize the class label information to eliminate the heterogeneity between different modalities. Most previous works mainly focus on solving the first challenge and often ignore the second one. In this paper, we propose a discriminative deep correspondence model to deal with both problems. By taking the class label information into consideration, our proposed model attempts to seamlessly combine the correspondence autoencoder (Corr-AE) and supervised correspondence neural networks (Super-Corr-NN) for cross-modal matching. The former model can learn the correspondence representations of data from different modalities, while the latter model is designed to discriminatively reduce the semantic gap between the low-level features and high-level descriptions. The extensive experiments tested on three public datasets demonstrate the effectiveness of the proposed approach in comparison with the state-of-the-art competing methods. |
关键词 | Correspondence autocoder Cross-modal retrieval Discriminative deep correspondence model Semantic gap |
DOI | 10.1007/978-981-10-7299-4_55 |
URL | 查看来源 |
收录类别 | CPCI-S |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000449835200055 |
Scopus入藏号 | 2-s2.0-85037863606 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13120 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Liu, Xin |
作者单位 | 1.Department of Computer Science,Huaqiao University,Xiamen,361021,China 2.Xiamen Key Laboratory of Computer Vision and Pattern Recognition,Huaqiao University,Xiamen,361021,China |
推荐引用方式 GB/T 7714 | Hu, Zhikai,Liu, Xin,Li, Anet al. Efficient cross-modal retrieval via discriminative deep correspondence model[C], 2017: 662-673. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Hu, Zhikai]的文章 |
[Liu, Xin]的文章 |
[Li, An]的文章 |
百度学术 |
百度学术中相似的文章 |
[Hu, Zhikai]的文章 |
[Liu, Xin]的文章 |
[Li, An]的文章 |
必应学术 |
必应学术中相似的文章 |
[Hu, Zhikai]的文章 |
[Liu, Xin]的文章 |
[Li, An]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论