科研成果详情

题名Efficient cross-modal retrieval via discriminative deep correspondence model
作者
发表日期2017
会议名称2nd CCF Chinese Conference on Computer Vision (CCCV)
会议录名称Communications in Computer and Information Science
ISSN1865-0929
卷号771
页码662-673
会议日期OCT 11-14, 2017
会议地点China Comp Federat, Tianjin, PEOPLES R CHINA
摘要

Cross-modal retrieval has recently drawn much attention due to the widespread existence of multi-modal data, and it generally involves two challenges: how to model the correlations and how to utilize the class label information to eliminate the heterogeneity between different modalities. Most previous works mainly focus on solving the first challenge and often ignore the second one. In this paper, we propose a discriminative deep correspondence model to deal with both problems. By taking the class label information into consideration, our proposed model attempts to seamlessly combine the correspondence autoencoder (Corr-AE) and supervised correspondence neural networks (Super-Corr-NN) for cross-modal matching. The former model can learn the correspondence representations of data from different modalities, while the latter model is designed to discriminatively reduce the semantic gap between the low-level features and high-level descriptions. The extensive experiments tested on three public datasets demonstrate the effectiveness of the proposed approach in comparison with the state-of-the-art competing methods.

关键词Correspondence autocoder Cross-modal retrieval Discriminative deep correspondence model Semantic gap
DOI10.1007/978-981-10-7299-4_55
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000449835200055
Scopus入藏号2-s2.0-85037863606
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13120
专题个人在本单位外知识产出
理工科技学院
通讯作者Liu, Xin
作者单位
1.Department of Computer Science,Huaqiao University,Xiamen,361021,China
2.Xiamen Key Laboratory of Computer Vision and Pattern Recognition,Huaqiao University,Xiamen,361021,China
推荐引用方式
GB/T 7714
Hu, Zhikai,Liu, Xin,Li, Anet al. Efficient cross-modal retrieval via discriminative deep correspondence model[C], 2017: 662-673.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Hu, Zhikai]的文章
[Liu, Xin]的文章
[Li, An]的文章
百度学术
百度学术中相似的文章
[Hu, Zhikai]的文章
[Liu, Xin]的文章
[Li, An]的文章
必应学术
必应学术中相似的文章
[Hu, Zhikai]的文章
[Liu, Xin]的文章
[Li, An]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。