科研成果详情

发表状态已发表Published
题名VESTA: A Secure and Efficient FHE-based Three-Party Vectorized Evaluation System for Tree Aggregation Models
作者
发表日期2025-06-09
会议名称51st ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems
来源出版物SIGMETRICS Abstracts 2025 - Abstracts of the 2025 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems
页码31-33
会议日期9 June 2025 - 13 June 2025
会议地点Stony Brook
摘要

Machine Learning as a Service (MLaaS) platforms facilitate collaborative machine learning, but trust issues necessitate privacy-preserving methods. As for tree ensembles, prior Fully Homomorphic Encryption (FHE)-based approaches suffer from slow inference speed and high memory usage. This work proposes the VESTA system that leverages compile-time precomputation and parallelizable model partitioning to enhance performance. VESTA achieves a 2.1x speedup and reduces memory consumption by 59.4% compared to state-of-the-art solutions.

关键词domain-specific compiler homomorphic encryption parallelism tree ensembles vectorization
DOI10.1145/3726854.3727331
相关网址查看来源
语种英语English
Scopus入藏号2-s2.0-105010303357
引用统计
文献类型会议摘要&总结
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13258
专题理工科技学院
通讯作者Liu, Hongyuan
作者单位
1.The Hong Kong University of Science and Technology (Guangzhou),Guangzhou,Guangdong,China
2.Guangdong Provincial/Zhuhai Key Laboratory of Irads,BNU-HKBU United International College,Zhuhai,Guangdong,China
3.Hong Kong Baptist University,Hong Kong,Hong Kong
4.School of Cyber Science and Technology,Shandong University,Qingdao,Shandong,China
推荐引用方式
GB/T 7714
Zhao, Haosong,Huang, Junhao,Chen, Zihanget al. VESTA: A Secure and Efficient FHE-based Three-Party Vectorized Evaluation System for Tree Aggregation Models. 2025.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhao, Haosong]的文章
[Huang, Junhao]的文章
[Chen, Zihang]的文章
百度学术
百度学术中相似的文章
[Zhao, Haosong]的文章
[Huang, Junhao]的文章
[Chen, Zihang]的文章
必应学术
必应学术中相似的文章
[Zhao, Haosong]的文章
[Huang, Junhao]的文章
[Chen, Zihang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。