科研成果详情

发表状态已发表Published
题名Disentangled representation learning for multi-view clustering via von Mises–Fisher hyperspherical embedding
作者
发表日期2025
发表期刊Neural Networks
ISSN/eISSN0893-6080
卷号191
摘要

Multi-view clustering has gained significant attention due to its ability to integrate data from diverse perspectives, frequently outperforming single-view approaches. However, existing methods often assume a Gaussian distribution within the latent embedding space, which can degrade performance when handling high-dimensional data or data with complex, non-Gaussian distributions. These limitations complicate effective data alignment, hinder meaningful information fusion across views, and impair accurate similarity measurement. To overcome these challenges, we propose a novel contrastive multi-view clustering framework that leverages hyperspherical embeddings by explicitly modeling the latent space using the von Mises–Fisher (vMF) distribution. Additionally, the framework incorporates a contrastive learning paradigm guided by alignment and uniformity losses, facilitating more discriminative and disentangled representations within the hyperspherical latent space. Specifically, the alignment loss enhances consistency across embeddings of different views from the same instance, while the uniformity loss ensures distinctiveness among embeddings from different samples within each cluster. By jointly optimizing these objectives, our method substantially improves intra-cluster cohesion and inter-cluster separability across multiple views. Extensive experiments conducted on several benchmark datasets confirm that the proposed approach significantly outperforms state-of-the-art methods, particularly in scenarios involving high-dimensional and complex datasets. The source code of our model is publicly accessible at https://github.com/jcdh/DRMVC.

关键词Contrastive learning Hyperspherical embedding Multi-view clustering Representation learning von-Mises Fisher distribution
DOI10.1016/j.neunet.2025.107802
URL查看来源
语种英语English
Scopus入藏号2-s2.0-105010498515
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13269
专题理工科技学院
通讯作者Fan, Wentao
作者单位
1.Hong Kong Baptist University,999077,Hong Kong
2.Guangdong Provincial/Zhuhai Key Laboratory IRADS and Department of Computer Science,Beijing Normal-Hong Kong Baptist University,Zhuhai,Guangdong,519087,China
3.Concordia Institute for Information Systems Engineering,Concordia University,Montreal,H3G 1T7,Canada
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Li, Zhixiang,Luo, Zhiwen,Bouguila, Nizaret al. Disentangled representation learning for multi-view clustering via von Mises–Fisher hyperspherical embedding[J]. Neural Networks, 2025, 191.
APA Li, Zhixiang, Luo, Zhiwen, Bouguila, Nizar, Su, Weifeng, & Fan, Wentao. (2025). Disentangled representation learning for multi-view clustering via von Mises–Fisher hyperspherical embedding. Neural Networks, 191.
MLA Li, Zhixiang,et al."Disentangled representation learning for multi-view clustering via von Mises–Fisher hyperspherical embedding". Neural Networks 191(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Zhixiang]的文章
[Luo, Zhiwen]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Li, Zhixiang]的文章
[Luo, Zhiwen]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Li, Zhixiang]的文章
[Luo, Zhiwen]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。