科研成果详情

题名GAANet: Graph Aggregation Alignment Feature Fusion for Multispectral Object Detection
作者
发表日期2025
发表期刊IEEE Transactions on Industrial Informatics
ISSN/eISSN1551-3203
摘要Multispectral object detection has shown great promise in security and industrial applications. RGB images offer rich texture but are limited by lighting, whereas IR images excel in low light but lack texture. Current methods face challenges in accurately capturing information differences and achieving effective feature fusion across modalities. To address these issues, we propose a graph aggregation alignment network (GAANet) for multispectral object detection. GAANet consists of two key modules: the graph interaction fusion module (GIFM) and the information alignment module (IAM). GIFM uses graph representation learning to effectively process single-modality features, and the direct connection information flow mechanism guides and references low-level multimodal features, ensuring the global and comprehensive fusion of node information in the graph space. The results are then refined through the IAM for secondary calibration and alignment of corresponding local regions, ensuring accurate fusion. We also introduce an information reconstruction path (IRP) and reconstruction loss to prevent the loss of single-modality information due to multiple IAM calculations. GAANet achieves excellent fusion detection capability and significantly reduces the number of parameters, reducing the model size by 61.2% compared with that of representative baselines such as CALNet. GAANet achieves state-of-the-art results on the DroneVehicle, LLVIP, and FLIR datasets, with superior object detection accuracy. It also performs well on the unaligned DVTOD dataset, effectively capturing feature offsets across modalities through global graph perception.
关键词Multimodal feature alignment multimodal fusion multispectral object detection
DOI10.1109/TII.2025.3588622
URL查看来源
语种英语English
Scopus入藏号2-s2.0-105012118989
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13722
专题北师香港浸会大学
通讯作者Zhou,Mingliang
作者单位
1.Chongqing University,School of Computer Science,Chongqing,400044,China
2.Chongqing University,State Key Laboratory of Mechanical Transmissions,Chongqing,400044,China
3.Zhuhai and Guangdong Key Lab. of AI Multi-Modal Data Proc. BNU-HKBU U. International College Zhuhai,BNU-UIC Institute of Artificial Intelligence and Future Networks,Beijing Normal University,Guangdong,519087,China
推荐引用方式
GB/T 7714
Zheng,Zihao,Zhou,Mingliang,Shang,Zhaoweiet al. GAANet: Graph Aggregation Alignment Feature Fusion for Multispectral Object Detection[J]. IEEE Transactions on Industrial Informatics, 2025.
APA Zheng,Zihao., Zhou,Mingliang., Shang,Zhaowei., Wei,Xuekai., Pu,Huayan., .. & Jia,Weijia. (2025). GAANet: Graph Aggregation Alignment Feature Fusion for Multispectral Object Detection. IEEE Transactions on Industrial Informatics.
MLA Zheng,Zihao,et al."GAANet: Graph Aggregation Alignment Feature Fusion for Multispectral Object Detection". IEEE Transactions on Industrial Informatics (2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zheng,Zihao]的文章
[Zhou,Mingliang]的文章
[Shang,Zhaowei]的文章
百度学术
百度学术中相似的文章
[Zheng,Zihao]的文章
[Zhou,Mingliang]的文章
[Shang,Zhaowei]的文章
必应学术
必应学术中相似的文章
[Zheng,Zihao]的文章
[Zhou,Mingliang]的文章
[Shang,Zhaowei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。