科研成果详情

题名No-Reference Image Quality Assessment: Exploring Intrinsic Distortion Characteristics via Generative Noise Estimation with Mamba
作者
发表日期2025
发表期刊IEEE Transactions on Circuits and Systems for Video Technology
ISSN/eISSN1051-8215
摘要In the field of no-reference image quality assessment (NR-IQA), the visual masking effect has long been a challenging issue. Although existing methods attempt to alleviate the interference caused by masking by generating pseudoreference images, the quality of these images is often constrained by the accuracy and reconstruction capabilities of image restoration algorithms. This can introduce additional biases, thereby affecting the reliability of the evaluation results. To address this problem, we propose a novel generative “noise” estimation framework (GNE-Vim) that eliminates the need for pseudoreference images. Instead, it deeply decouples the distortion components from degraded images and performs quality-aware modelling of these components. During the training phase, the model leverages both reference images and distortion components to guide the learning of the true distortion distribution. In the inference phase, quality prediction is conducted directly on the basis of the decoupled distortion components, making the evaluation results more aligned with human subjective perception. The experimental results demonstrate that the proposed method achieves strong performance across datasets containing various types of distortions.
关键词fusion network generative noise estimation No-reference image quality assessment vision mamba
DOI10.1109/TCSVT.2025.3586106
URL查看来源
语种英语English
Scopus入藏号2-s2.0-105010295098
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13723
专题北师香港浸会大学
通讯作者Xian,Weizhi; Zhou,Mingliang
作者单位
1.Chongqing University,School of Computer Science,Chongqing,400044,China
2.Chongqing University,College of Computer Science,Chongqing,400044,China
3.Harbin Institute of Technology,Chongqing Research Institute of Harbin Institute of Technology,Chongqing,401151,China
4.Chongqing University,School of Mechanical and Vehicle Engineering,Chongqing,400044,China
5.BNU-UIC Institute of Artificial Intelligence and Future Networks,Beijing Normal University,Zhuhai and Guangdong Key Lab of AI Multi-Modal Data Processing,BNU-HKBU United International College,Zhuhai,519087,China
6.Lingnan University,Department of Computing and Decision Science,Hong Kong
推荐引用方式
GB/T 7714
Lan,Xuting,Xian,Weizhi,Zhou,Minglianget al. No-Reference Image Quality Assessment: Exploring Intrinsic Distortion Characteristics via Generative Noise Estimation with Mamba[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025.
APA Lan,Xuting., Xian,Weizhi., Zhou,Mingliang., Yan,Jielu., Wei,Xuekai., .. & Kwong,Sam. (2025). No-Reference Image Quality Assessment: Exploring Intrinsic Distortion Characteristics via Generative Noise Estimation with Mamba. IEEE Transactions on Circuits and Systems for Video Technology.
MLA Lan,Xuting,et al."No-Reference Image Quality Assessment: Exploring Intrinsic Distortion Characteristics via Generative Noise Estimation with Mamba". IEEE Transactions on Circuits and Systems for Video Technology (2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lan,Xuting]的文章
[Xian,Weizhi]的文章
[Zhou,Mingliang]的文章
百度学术
百度学术中相似的文章
[Lan,Xuting]的文章
[Xian,Weizhi]的文章
[Zhou,Mingliang]的文章
必应学术
必应学术中相似的文章
[Lan,Xuting]的文章
[Xian,Weizhi]的文章
[Zhou,Mingliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。