科研成果详情

题名Boosting Time-series Domain Adaptation via A Time-Frequency Consensus Framework
作者
发表日期2025
发表期刊IEEE Transactions on Artificial Intelligence
摘要Unsupervised Domain Adaptation (UDA) has proven to be effective in addressing the domain shift problem in computer vision. However, compared with visual applications, UDA for time series brings forth additional challenges. Potential domain shifts may have varying impacts on both time and frequency features, rendering conventional UDA methods less effective in this context. To address these challenges, we propose a Time-Frequency Consensus Domain Adaption (TFCDA) framework to enhance UDA methods for time-series data. TFCDA designs a frequency encoder, a trainable Time-Frequency Mapping (TFM), and a consensus loss, building upon conventional UDA methods to boost their performance. The TFM is trained on source domain data to learn the inherent time-frequency feature mapping, while the novel consensus loss ensures consistent feature transfer during UDA in the target domain, effectively reducing domain shifts in both time and frequency, and thus boosting overall performance. Experimental evaluations on four publicly available time-series datasets demonstrate TFCDA's effectiveness in enhancing existing UDA methods for time-series data, highlighting its potential for real-world applications.
关键词Domain Adaption Time-Frequency Consensus Time-series Transfer Learning
DOI10.1109/TAI.2025.3571869
URL查看来源
语种英语English
Scopus入藏号2-s2.0-105006897381
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13727
专题北师香港浸会大学
通讯作者Chen,Zhenghua
作者单位
1.Institute of Technology Innovation Institute,United Arab Emirates
2.Institute for Infocomm Research (I2R),A∗STAR,Singapore
3.The Chinese University of Hong Kong (CUHK),Department of Computer Science and Engineering,Hong Kong,Hong Kong
4.Nanyang Technological University,School of Computer Science and Engineering,Singapore
5.Beijing Normal University,Institute of Artificial Intelligence and Future Networks,Zhuhai,519087,China
6.BNUHKBU United International College,Guangdong Key Lab of AI and Multi-Modal Data Processing,Zhuhai,519087,China
推荐引用方式
GB/T 7714
Yang,Wenmian,Ragab,Mohamed,Wu,Minet al. Boosting Time-series Domain Adaptation via A Time-Frequency Consensus Framework[J]. IEEE Transactions on Artificial Intelligence, 2025.
APA Yang,Wenmian., Ragab,Mohamed., Wu,Min., Pan,Sinno Jialin., Lin,Guosheng., .. & Chen,Zhenghua. (2025). Boosting Time-series Domain Adaptation via A Time-Frequency Consensus Framework. IEEE Transactions on Artificial Intelligence.
MLA Yang,Wenmian,et al."Boosting Time-series Domain Adaptation via A Time-Frequency Consensus Framework". IEEE Transactions on Artificial Intelligence (2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang,Wenmian]的文章
[Ragab,Mohamed]的文章
[Wu,Min]的文章
百度学术
百度学术中相似的文章
[Yang,Wenmian]的文章
[Ragab,Mohamed]的文章
[Wu,Min]的文章
必应学术
必应学术中相似的文章
[Yang,Wenmian]的文章
[Ragab,Mohamed]的文章
[Wu,Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。