科研成果详情

题名Adaptive Digital Twin Migration in Vehicular Edge Computing and Networks
作者
发表日期2025
发表期刊IEEE Transactions on Vehicular Technology
ISSN/eISSN0018-9545
卷号74期号:3页码:4839-4854
摘要The surge in mobile vehicles and data traffic in Vehicular Edge Computing and Networks (VECON ) requires innovative approaches for low latency, stable connectivity, and efficient resource usage in fast-moving vehicles. Existing studies have identified that utilizing digital twins (DT ) can effectively improve service quality in VECON . However, it still faces substantial challenges posed by large-scale complex DT communications in sustaining real-time collaborative endeavors. In particular, within the dynamic VECON , the decision regarding DT migration plays a pivotal role in sustaining the quality of services. In this paper, we propose an adaptive DT migration (ADM) algorithm to minimize the overall migration costs when DTs deliver services. Specifically, 1) We formulate ADM as a combinatorial optimization problem in VECON , comprehensively considering communication latency and migration latency under complex DT communications, vehicular mobilities, and dynamic states of edges; 2) An ADM algorithm based on off-policy actor-critic reinforcement learning is proposed to make migration decisions. Moreover, the ADM agent employs warm-up policies to address exploration challenges in sparse state spaces; 3) Simulations based on real-world, large-scale urban vehicular mobility datasets demonstrate that our method outperforms existing algorithms by approximately 39% on average, and it can achieve results close to the optimal.
关键词deep reinforcement learning Digital twin migration vehicular edge computing
DOI10.1109/TVT.2024.3492349
URL查看来源
语种英语English
Scopus入藏号2-s2.0-105001090835
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13731
专题北师香港浸会大学
通讯作者Tang,Zhiqing
作者单位
1.Hong Kong Baptist University,Hong Kong,Kowloon Tong,Hong Kong
2.Beijing Normal University-Hong Kong Baptist University United International College,Faculty of Science and Technology,Zhuhai,519087,China
3.Shanghai Jiao Tong University,Department of Computer Science and Engineering,Shanghai,200240,China
4.Beijing Normal University,Institute of Artificial Intelligence and Future Networks,Zhuhai,519087,China
5.University of Macau,State Key Lab of IoT for Smart City,999078,Macao
6.BNU-HKBU United International College,Guangdong Key Lab of AI and Multi-Modal Data Processing,Zhuhai,519087,China
7.University of Oslo,Department of Informatics,Oslo,0316,Norway
8.Shenzhen University of Advanced Technology,Shenzhen,518055,China
第一作者单位理工科技学院
推荐引用方式
GB/T 7714
Mou,Fangyi,Lou,Jiong,Tang,Zhiqinget al. Adaptive Digital Twin Migration in Vehicular Edge Computing and Networks[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4839-4854.
APA Mou,Fangyi., Lou,Jiong., Tang,Zhiqing., Wu,Yuan., Jia,Weijia., .. & Zhao,Wei. (2025). Adaptive Digital Twin Migration in Vehicular Edge Computing and Networks. IEEE Transactions on Vehicular Technology, 74(3), 4839-4854.
MLA Mou,Fangyi,et al."Adaptive Digital Twin Migration in Vehicular Edge Computing and Networks". IEEE Transactions on Vehicular Technology 74.3(2025): 4839-4854.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Mou,Fangyi]的文章
[Lou,Jiong]的文章
[Tang,Zhiqing]的文章
百度学术
百度学术中相似的文章
[Mou,Fangyi]的文章
[Lou,Jiong]的文章
[Tang,Zhiqing]的文章
必应学术
必应学术中相似的文章
[Mou,Fangyi]的文章
[Lou,Jiong]的文章
[Tang,Zhiqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。