题名 | Policy-Based Reinforcement Learning for Online Container Scheduling in Meta Computing |
作者 | |
发表日期 | 2024 |
会议名称 | 1st IEEE International Conference on Meta Computing, ICMC 2024 |
会议录名称 | Proceedings - 2024 International Conference on Meta Computing, ICMC 2024
![]() |
页码 | 300-309 |
会议日期 | 2024-06-20——2024-06-23 |
会议地点 | Qingdao |
摘要 | Meta computing is a novel computing paradigm that harnesses the collective computing resources of the Internet, offering efficient, fault-tolerant, and personalized services while ensuring strong security and privacy. Nevertheless, overcoming the existing barriers to integrating network-wide computing power and unifying the entire network's computational resources remains a formidable challenge. Containers have gained significant popularity as a virtualization solution, holding promise in addressing the challenges presented by how to efficiently utilize resources in meta computing. Existing research has shown that task scheduling at the granularity of containers can substantially reduce the completion delay and resource consumption, making it more suitable for meeting real-time requirements. To minimize both the total task time and energy costs, we introduce an online container scheduling algorithm tailored for a small-scale meta computing framework, which formulates the online container scheduling problem to optimize the overall task utility. We adopt a policy gradient-based Reinforcement Learning (RL) algorithm that accounts for the unique characteristics of meta computing and expects to get a good performance. Experimental results validate that our RL-based algorithm outperforms other commonly used baseline algorithms. |
关键词 | Computational Resources Container Scheduling Meta Computing Optimization Reinforcement Learning |
DOI | 10.1109/ICMC60390.2024.00040 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-105012226439 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13747 |
专题 | 北师香港浸会大学 |
通讯作者 | Guo,Jianxiong |
作者单位 | 1.Advanced Institute of Natural Sciences,Beijing Normal University,Zhuhai,519087,China 2.BNU-HKBU United International College,Guangdong Key Lab of AI and Multi-Modal Data Processing,Department of Computer Science,Zhuhai,519087,China |
第一作者单位 | 北师香港浸会大学 |
通讯作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Wu,Jianqiu,Guo,Jianxiong,Tang,Zhiqinget al. Policy-Based Reinforcement Learning for Online Container Scheduling in Meta Computing[C], 2024: 300-309. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论