科研成果详情

题名Low-Latency Layer-Aware Proactive and Passive Container Migration in Meta Computing
作者
发表日期2024
会议名称1st IEEE International Conference on Meta Computing, ICMC 2024
会议录名称Proceedings - 2024 International Conference on Meta Computing, ICMC 2024
页码176-185
会议日期2024-06-20——2024-06-23
会议地点Qingdao
摘要Meta computing is a new computing paradigm that aims to efficiently utilize all network computing resources to provide fault-tolerant, personalized services with strong security and privacy guarantees. It also seeks to virtualize the Internet as many meta computers. In meta computing, tasks can be assigned to containers at edge nodes for processing, based on container images with multiple layers. The dynamic and resource-constrained nature of meta computing environments requires an optimal container migration strategy for mobile users to minimize latency. However, the problem of container migration in meta computing has not been thoroughly explored. To address this gap, we present low-latency, layer-aware container migration strategies that consider both proactive and passive migration. Specifically: 1) We formulate the container migration problem in meta computing, taking into account layer dependencies to reduce migration costs and overall task duration by considering four delays. 2) We introduce a reinforcement learning algorithm based on policy gradients to minimize total latency by identifying layer dependencies for action selection, making decisions for both proactive and passive migration. Expert demonstrations are introduced to enhance exploitation. 3) Experiments using real data trajectories show that the algorithm outperforms baseline algorithms, achieving lower total latency.
关键词container migration Meta computing reinforcement learning task scheduling
DOI10.1109/ICMC60390.2024.00026
URL查看来源
语种英语English
Scopus入藏号2-s2.0-105012162633
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13751
专题北师香港浸会大学
通讯作者Tang,Zhiqing
作者单位
1.Beijing Normal University,Faculty of Arts and Sciences,China
2.Institute of Artificial Intelligence and Future Networks,Beijing Normal University,China
3.University of Zurich,Department of Informatics,Zurich,Switzerland
4.BNU-HKBU United International College,Guangdong Key Lab of AI and Multi-Modal Data Processing,China
5.Shanghai Jiao Tong University,Department of Computer Science and Engineering,China
推荐引用方式
GB/T 7714
Liu,Mengjie,Li,Yihua,Mou,Fangyiet al. Low-Latency Layer-Aware Proactive and Passive Container Migration in Meta Computing[C], 2024: 176-185.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu,Mengjie]的文章
[Li,Yihua]的文章
[Mou,Fangyi]的文章
百度学术
百度学术中相似的文章
[Liu,Mengjie]的文章
[Li,Yihua]的文章
[Mou,Fangyi]的文章
必应学术
必应学术中相似的文章
[Liu,Mengjie]的文章
[Li,Yihua]的文章
[Mou,Fangyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。