科研成果详情

发表状态已发表Published
题名Expected lengths of confidence intervals based on empirical discrepancy statistics
作者
发表日期2005
发表期刊Biometrika
ISSN/eISSN0006-3444
卷号92期号:2页码:499-503
摘要

We consider a very general class of empirical discrepancy statistics that includes the Cressie-Read discrepancy statistics and, in particular, the empirical likelihood ratio statistic. Higher-order asymptotics for expected lengths of associated confidence intervals are investigated. An explicit formula is worked out and its use for comparative purposes is discussed. It is seen that the empirical likelihood ratio statistic, which enjoys interesting second-order power properties, loses much of its edge under the present criterion. © 2005 Biometrika Trust.

关键词Cressie-Read discrepancy Edgeworth expansion Empirical likelihood Minimaxity
DOI10.1093/biomet/92.2.499
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology ; Mathematics
WOS类目Biology ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号WOS:000230293000018
Scopus入藏号2-s2.0-21644479433
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/2432
专题个人在本单位外知识产出
通讯作者Fang, Kaitai
作者单位
1.Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
2.Indian Institute of Management Calcutta, Joka, Kolkata 700 104, Diamond Harbour Road, India
推荐引用方式
GB/T 7714
Fang, Kaitai,Mukerjee, Rahul. Expected lengths of confidence intervals based on empirical discrepancy statistics[J]. Biometrika, 2005, 92(2): 499-503.
APA Fang, Kaitai, & Mukerjee, Rahul. (2005). Expected lengths of confidence intervals based on empirical discrepancy statistics. Biometrika, 92(2), 499-503.
MLA Fang, Kaitai,et al."Expected lengths of confidence intervals based on empirical discrepancy statistics". Biometrika 92.2(2005): 499-503.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fang, Kaitai]的文章
[Mukerjee, Rahul]的文章
百度学术
百度学术中相似的文章
[Fang, Kaitai]的文章
[Mukerjee, Rahul]的文章
必应学术
必应学术中相似的文章
[Fang, Kaitai]的文章
[Mukerjee, Rahul]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。