科研成果详情

发表状态已发表Published
题名Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon
作者
发表日期2017
发表期刊Numerische Mathematik
ISSN/eISSN0029-599X
卷号136期号:2页码:383-409
摘要

In this paper, we establish the unconditional stability and optimal error estimates of a linearized backward Euler–Galerkin finite element method (FEM) for the time-dependent nonlinear thermistor equations in a two-dimensional nonconvex polygon. Due to the nonlinearity of the equations and the non-smoothness of the solution in a nonconvex polygon, the analysis is not straightforward, while most previous efforts for problems in nonconvex polygons mainly focused on linear models. Our theoretical analysis is based on an error splitting proposed in [30, 31] together with rigorous regularity analysis of the nonlinear thermistor equations and the corresponding iterated (time-discrete) elliptic system in a nonconvex polygon. With the proved regularity, we establish the stability in l∞(L∞) and the convergence in l∞(L2) for the fully discrete finite element solution without any restriction on the time-step size. The approach used in this paper may also be applied to other nonlinear parabolic systems in nonconvex polygons. Numerical results confirm our theoretical analysis and show clearly that no time-step condition is needed. © 2016, Springer-Verlag Berlin Heidelberg.

关键词Finite element method Nonconvex polygon Optimal error estimate Thermistor problem Unconditional stability
DOI10.1007/s00211-016-0843-9
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000400970300002
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/3237
专题个人在本单位外知识产出
通讯作者Li, Buyang
作者单位
1.School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China
2.Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
3.Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
推荐引用方式
GB/T 7714
Gao, Huadong,Li, Buyang,Sun, Weiwei. Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon[J]. Numerische Mathematik, 2017, 136(2): 383-409.
APA Gao, Huadong, Li, Buyang, & Sun, Weiwei. (2017). Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon. Numerische Mathematik, 136(2), 383-409.
MLA Gao, Huadong,et al."Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon". Numerische Mathematik 136.2(2017): 383-409.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Gao, Huadong]的文章
[Li, Buyang]的文章
[Sun, Weiwei]的文章
百度学术
百度学术中相似的文章
[Gao, Huadong]的文章
[Li, Buyang]的文章
[Sun, Weiwei]的文章
必应学术
必应学术中相似的文章
[Gao, Huadong]的文章
[Li, Buyang]的文章
[Sun, Weiwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。