发表状态 | 已发表Published |
题名 | Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon |
作者 | |
发表日期 | 2017 |
发表期刊 | Numerische Mathematik
![]() |
ISSN/eISSN | 0029-599X |
卷号 | 136期号:2页码:383-409 |
摘要 | In this paper, we establish the unconditional stability and optimal error estimates of a linearized backward Euler–Galerkin finite element method (FEM) for the time-dependent nonlinear thermistor equations in a two-dimensional nonconvex polygon. Due to the nonlinearity of the equations and the non-smoothness of the solution in a nonconvex polygon, the analysis is not straightforward, while most previous efforts for problems in nonconvex polygons mainly focused on linear models. Our theoretical analysis is based on an error splitting proposed in [30, 31] together with rigorous regularity analysis of the nonlinear thermistor equations and the corresponding iterated (time-discrete) elliptic system in a nonconvex polygon. With the proved regularity, we establish the stability in l∞(L∞) and the convergence in l∞(L2) for the fully discrete finite element solution without any restriction on the time-step size. The approach used in this paper may also be applied to other nonlinear parabolic systems in nonconvex polygons. Numerical results confirm our theoretical analysis and show clearly that no time-step condition is needed. © 2016, Springer-Verlag Berlin Heidelberg. |
关键词 | Finite element method Nonconvex polygon Optimal error estimate Thermistor problem Unconditional stability |
DOI | 10.1007/s00211-016-0843-9 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000400970300002 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/3237 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Li, Buyang |
作者单位 | 1.School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China 2.Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 3.Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong |
推荐引用方式 GB/T 7714 | Gao, Huadong,Li, Buyang,Sun, Weiwei. Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon[J]. Numerische Mathematik, 2017, 136(2): 383-409. |
APA | Gao, Huadong, Li, Buyang, & Sun, Weiwei. (2017). Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon. Numerische Mathematik, 136(2), 383-409. |
MLA | Gao, Huadong,et al."Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon". Numerische Mathematik 136.2(2017): 383-409. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论