科研成果详情

发表状态已发表Published
题名Maximal Lp analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra
作者
发表日期2017
发表期刊Mathematics of Computation
ISSN/eISSN0025-5718
卷号86期号:305页码:1071-1102
摘要

The paper is concerned with Galerkin finite element solutions of parabolic equations in a convex polygon or polyhedron with a diffusion coefficient in W1, N+α for some α > 0, where N denotes the dimension of the domain. We prove the analyticity of the semigroup generated by the discrete elliptic operator, the discrete maximal Lp regularity and the optimal Lp error estimate of the finite element solution for the parabolic equation. © 2016 American Mathematical Society.

DOI10.1090/mcom/3133
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000395905700003
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/3240
专题个人在本单位外知识产出
通讯作者Li, Buyang
作者单位
1.Mathematisches Institut, Universität Tübingen, Tübingen, D-72076, Germany
2.Department of Mathematics, Nanjing University, Nanjing, 210093, China
3.Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong
4.Department of Mathematics, City University of Hong Kong, Hong Kong
推荐引用方式
GB/T 7714
Li, Buyang,Sun, Weiwei. Maximal Lp analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra[J]. Mathematics of Computation, 2017, 86(305): 1071-1102.
APA Li, Buyang, & Sun, Weiwei. (2017). Maximal Lp analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. Mathematics of Computation, 86(305), 1071-1102.
MLA Li, Buyang,et al."Maximal Lp analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra". Mathematics of Computation 86.305(2017): 1071-1102.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Buyang]的文章
[Sun, Weiwei]的文章
百度学术
百度学术中相似的文章
[Li, Buyang]的文章
[Sun, Weiwei]的文章
必应学术
必应学术中相似的文章
[Li, Buyang]的文章
[Sun, Weiwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。