科研成果详情

题名Temporal association rule mining
作者
发表日期2015
会议名称5th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2015
会议录名称Intelligence Science and Big Data Engineering: Big Data and Machine Learning Techniques
ISBN9783319238616
ISSN0302-9743
卷号9243
页码247-257
会议日期14 June 2015 through 16 June 2015
会议地点Suzhou, China
出版者Springer Verlag
摘要

A modified framework, that applies temporal association rule mining to financial time series, is proposed in this paper. The top four components stocks of Dow Jones Industrial Average (DJIA) in terms of highest daily volume and DJIA (index time series, expressed in points) are used to form the time-series database (TSDB) from 1994 to 2007. The main goal is to generate profitable trades by uncovering hidden knowledge from the TSDB. This hidden knowledge refers to temporal association rules, which represent the repeated relationships between events of the financial time series with time-parameter constraints: sliding time windows. Following an approach similar to Knowledge Discovery in Databases (KDD), the basic idea is to use frequent events to discover significant rules. Then, we propose the Multi-level Intensive Subset Learning (MIST) algorithm and use it to unveil the finer rules within the subset of the corresponding significant rules. Hypothesis testing is later applied to remove rules that are deemed to occur by chance. © Springer International Publishing Switzerland 2015.

关键词DJIA Events Financial time series Hypothesis testing Knowledge discovery Temporal data mining
DOI10.1007/978-3-319-23862-3_24
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science ; Robotics
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods ; Robotics
WOS记录号WOS:000374477000024
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/4325
专题个人在本单位外知识产出
作者单位
1.Department of Electrical and Computer Engineering, National University of Singapore117576, Singapore
2.Department of Automation, Zhejiang University of Technology, Hangzhou, 310023, China
推荐引用方式
GB/T 7714
Tan, Tingfeng,Wang, Qingguo,Phang, Tianheet al. Temporal association rule mining[C]: Springer Verlag, 2015: 247-257.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tan, Tingfeng]的文章
[Wang, Qingguo]的文章
[Phang, Tianhe]的文章
百度学术
百度学术中相似的文章
[Tan, Tingfeng]的文章
[Wang, Qingguo]的文章
[Phang, Tianhe]的文章
必应学术
必应学术中相似的文章
[Tan, Tingfeng]的文章
[Wang, Qingguo]的文章
[Phang, Tianhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。