科研成果详情

发表状态已发表Published
题名A hybrid feedforward neural network algorithm for detecting outliers in non-stationary multivariate time series
作者
发表日期2021
发表期刊Expert Systems with Applications
ISSN/eISSN0957-4174
卷号184
摘要

To understand the behavior of complex phenomena, data collection and data analysis are the two basic key issues in this process. The most significant hard problem experimenters may face is the optimality selection of the dataset which provides valuable information about the behavior of the phenomena under the experimentation. An experiment with an optimal dataset allows more significant parameters to be estimated with minimum variance and without bias. Unfortunately, the collected datasets of many real-life experiments are not optimal due to the existence of outliers. An outlier is an observation that deviates significantly from other experimental data points arouse suspicions that it was generated by a different mechanism. The presence of even a few outliers leads to misspecification of model, biased estimation of parameters, and poor forecasts. Therefore, removing the outliers from the collected datasets is the critical and significant step before analyzing the data. This paper gives a hybrid feedforward neural network algorithm for detecting outliers as single points as well as small and large clusters in non-stationary multivariate time series using robust measures of location and dispersion matrix. From various perspectives, the performance of the proposed algorithm is compared with the existing algorithms under different scenarios using simulated datasets. © 2021 Elsevier Ltd

关键词Feedforward neural network Mahalanobis distance Non-stationary time series Outlier detection Robust estimate
DOI10.1016/j.eswa.2021.115545
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science
WOS记录号WOS:000697191700001
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/4462
专题理工科技学院
通讯作者Vishwakarma, Gajendra K.; Paul, Chinmoy; Elsawah, A. M.
作者单位
1.Department of Mathematics & Computing, Indian Institute of Technology Dhanbad, Dhanbad, 826004, India
2.Department of Statistics, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Eraligool, 788723, Karimganj, India
3.Division of Science and Technology, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai, 519085, China
4.Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Vishwakarma, Gajendra K.,Paul, Chinmoy,Elsawah, A. M. A hybrid feedforward neural network algorithm for detecting outliers in non-stationary multivariate time series[J]. Expert Systems with Applications, 2021, 184.
APA Vishwakarma, Gajendra K., Paul, Chinmoy, & Elsawah, A. M. (2021). A hybrid feedforward neural network algorithm for detecting outliers in non-stationary multivariate time series. Expert Systems with Applications, 184.
MLA Vishwakarma, Gajendra K.,et al."A hybrid feedforward neural network algorithm for detecting outliers in non-stationary multivariate time series". Expert Systems with Applications 184(2021).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Vishwakarma, Gajendra K.]的文章
[Paul, Chinmoy]的文章
[Elsawah, A. M.]的文章
百度学术
百度学术中相似的文章
[Vishwakarma, Gajendra K.]的文章
[Paul, Chinmoy]的文章
[Elsawah, A. M.]的文章
必应学术
必应学术中相似的文章
[Vishwakarma, Gajendra K.]的文章
[Paul, Chinmoy]的文章
[Elsawah, A. M.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。