Status | 已发表Published |
Title | 基于区块自适应特征融合的图像实时语义分割 |
Alternative Title | Real-time Image Semantic Segmentation Based on Block Adaptive Feature Fusion |
Creator | |
Date Issued | 2021 |
Source Publication | 自 动 化 学 报
![]() |
ISSN | 0254-4156 |
Volume | 47Issue:5Pages:1137-1148 |
Abstract | 近年来结合深度学习的图像语义分割方法日益发展,并在机器人、自动驾驶等领域中得到应用.本文提出一种基于区块自适应特征融合(Block adaptive feature fusion, BAFF)的实时语义分割算法,该算法在轻量卷积网络架构上,对前后文特征进行分区块自适应加权融合,有效提高了实时语义分割精度.首先,分析卷积网络层间分割特征的感受野对分割结果的影响,并在跳跃连接结构(SkipNet)上提出一种特征分区块加权融合机制;然后,采用三维卷积进行层间特征整合,建立基于深度可分离的特征权重计算网络.最终,在自适应加权作用下实现区块特征融合.实验结果表明,本文算法能够在图像分割的快速性和准确性之间做到很好的平衡,在复杂场景分割上具有较好的鲁棒性. |
Other Abstract | Recently, image semantic segmentation has made great progress with deep learning, which benefits robotics and automatic driving vehicle. This paper proposes a real-time semantic segmentation algorithm based on block adaptive feature fusion (BAFF). Under the framework of a light convolutional network, a block adaptive feature fusion algorithm is proposed in the context-embedding module, to improve the accuracy of real-time semantic segmentation. First, the problem caused by the different size of receptive field in layers is analyzed, and a feature fusion mechanism with block weight is presented on SkipNet. Then, layers' feature integration is carried on by three-dimension convolution. The feature- weights are calculated by an additional network with depthwise-separable-convolutions (DSC). Finally, the features are fused under adaptive weights. Experiments show that this method obtains excellent segmentation results with a good balance between rapidity and accuracy and owns robustness on segmentation of complex scenes. Copyright © 2021 Acta Automatica Sinica. All rights reserved. |
Keyword | 深度学习 实时语义分割网络 区块自适应特征融合 跳跃连接结构 |
DOI | 10.16383/j.aas.c180645 |
URL | View source |
Indexed By | 中文核心期刊要目总览 ; EI ; CSCD |
Language | 中文Chinese |
Citation statistics |
Cited Times [WOS]:0
[WOS Record]
[Related Records in WOS]
|
Document Type | Journal article |
Identifier | http://repository.uic.edu.cn/handle/39GCC9TT/4953 |
Collection | Research outside affiliated institution |
Affiliation | 1.华侨大学信息科学与工程学院 厦门 361021 中国 2.约翰内斯堡 大学智能系统研究所 约翰内斯堡 2146 南非 3.香港理工大学 香港 999077 中国 |
Recommended Citation GB/T 7714 | 黄庭鸿,聂卓赟,王庆国等. 基于区块自适应特征融合的图像实时语义分割[J]. 自 动 化 学 报, 2021, 47(5): 1137-1148. |
APA | 黄庭鸿, 聂卓赟, 王庆国, 李帅, 李帅, & 郭东生. (2021). 基于区块自适应特征融合的图像实时语义分割. 自 动 化 学 报, 47(5), 1137-1148. |
MLA | 黄庭鸿,et al."基于区块自适应特征融合的图像实时语义分割". 自 动 化 学 报 47.5(2021): 1137-1148. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment