Status | 已发表Published |
Title | Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events |
Creator | |
Date Issued | 2016 |
Source Publication | Statistical Methods in Medical Research
![]() |
ISSN | 0962-2802 |
Volume | 25Issue:6Pages:2521-2540 |
Abstract | In medical studies, repeated measurements of continuous, binary and ordinal outcomes are routinely collected from the same patient. Instead of modelling each outcome separately, in this study we propose to jointly model the trivariate longitudinal responses, so as to take account of the inherent association between the different outcomes and thus improve statistical inferences. This work is motivated by a large cohort study in the North West of England, involving trivariate responses from each patient: Body Mass Index, Depression (Yes/No) ascertained with cut-off score not less than 8 at the Hospital Anxiety and Depression Scale, and Pain Interference generated from the Medical Outcomes Study 36-item short-form health survey with values returned on an ordinal scale 1-5. There are some well-established methods for combined continuous and binary, or even continuous and ordinal responses, but little work was done on the joint analysis of continuous, binary and ordinal responses. We propose conditional joint random-effects models, which take into account the inherent association between the continuous, binary and ordinal outcomes. Bayesian analysis methods are used to make statistical inferences. Simulation studies show that, by jointly modelling the trivariate outcomes, standard deviations of the estimates of parameters in the models are smaller and much more stable, leading to more efficient parameter estimates and reliable statistical inferences. In the real data analysis, the proposed joint analysis yields a much smaller deviance information criterion value than the separate analysis, and shows other good statistical properties too. © SAGE Publications. |
Keyword | binary data Gibbs sampling joint modelling longitudinal multivariate outcomes ordinal random effects |
DOI | 10.1177/0962280214526199 |
URL | View source |
Indexed By | SCIE |
Language | 英语English |
WOS Research Area | Health Care Sciences & Services ; Mathematical & Computational Biology ; Medical Informatics ; Mathematics |
WOS Subject | Health Care Sciences & Services ; Mathematical & Computational Biology ; Medical Informatics ; Statistics & Probability |
WOS ID | WOS:000388625700009 |
Citation statistics | |
Document Type | Journal article |
Identifier | http://repository.uic.edu.cn/handle/39GCC9TT/5028 |
Collection | Research outside affiliated institution |
Affiliation | 1.School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom 2.Arthritis Research UK Primary Care Centre, Keele University, United Kingdom |
Recommended Citation GB/T 7714 | Li, Qiuju,Pan, Jianxin,Belcher, John. Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events[J]. Statistical Methods in Medical Research, 2016, 25(6): 2521-2540. |
APA | Li, Qiuju, Pan, Jianxin, & Belcher, John. (2016). Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events. Statistical Methods in Medical Research, 25(6), 2521-2540. |
MLA | Li, Qiuju,et al."Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events". Statistical Methods in Medical Research 25.6(2016): 2521-2540. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment