科研成果详情

发表状态已发表Published
题名pHeavy: Predicting Heavy Flows in the Programmable Data Plane
作者
发表日期2021
发表期刊IEEE Transactions on Network and Service Management
ISSN/eISSN1932-4537
卷号18期号:4页码:4353-4364
摘要

Since heavy flows account for a significant fraction of network traffic, being able to predict heavy flows has benefited many network management applications for mitigating link congestion, scheduling of network capacity, exposing network attacks and so on. Existing machine learning based predictors are largely implemented on the control plane of Software Defined Networking (SDN) paradigm. As a result, frequent communication between the control and data planes can cause unnecessary overhead and additional delay in decision making. In this paper, we present pHeavy, a machine learning based scheme for predicting heavy flows directly on the programmable data plane, thus eliminating network overhead and latency to SDN controller. Considering the scarce memory and limited computation capability in the programmable data plane, pHeavy includes a packet processing pipeline which deploys pre-trained decision tree models for in-network prediction. We have implemented pHeavy in both bmv2 software switch and P4 hardware switch (i.e., Barefoot Tofino).Evaluation results demonstrate that pHeavy has achieved 85% and 98% accuracy after receiving the first 5 and 20 packets of a flow respectively, while being able to reduce the size of decision tree by 5.4x on average. More importantly, pHeavy can predict heavy flows at line rate on the P4 hardware switch.

关键词Computational modeling Decision tree Decision trees Heavy flow Machine learning Machine learning algorithms P4. Predictive models Programmable data plane Switches Training
DOI10.1109/TNSM.2021.3094514
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000728930000030
Scopus入藏号2-s2.0-85112667767
引用统计
被引频次:42[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6061
专题研究生院
理工科技学院
作者单位
1.Department of Computer Science, Jinan University, Guangzhou, China. (e-mail: zhangxiaoquan547@gmail.com)
2.Department of Computer Science, Jinan University, Guangzhou, China.
3.Department of Computer Science, Loughborough University, UK.
4.Weijia Jia with BNU-UIC Institute of Artificial Intelligence and Future Networks, Beijing Normal University (BNU Zhuhai) and BNU-HKBU United International College, Zhuhai, China.
推荐引用方式
GB/T 7714
Zhang, Xiaoquan,Cui, Lin,Tso, Fung Poet al. pHeavy: Predicting Heavy Flows in the Programmable Data Plane[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4353-4364.
APA Zhang, Xiaoquan, Cui, Lin, Tso, Fung Po, & Jia, Weijia. (2021). pHeavy: Predicting Heavy Flows in the Programmable Data Plane. IEEE Transactions on Network and Service Management, 18(4), 4353-4364.
MLA Zhang, Xiaoquan,et al."pHeavy: Predicting Heavy Flows in the Programmable Data Plane". IEEE Transactions on Network and Service Management 18.4(2021): 4353-4364.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiaoquan]的文章
[Cui, Lin]的文章
[Tso, Fung Po]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiaoquan]的文章
[Cui, Lin]的文章
[Tso, Fung Po]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiaoquan]的文章
[Cui, Lin]的文章
[Tso, Fung Po]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。