科研成果详情

题名Supervised spatio-temporal neighborhood topology learning for action recognition
作者
发表日期2013
发表期刊IEEE Transactions on Circuits and Systems for Video Technology
ISSN/eISSN1051-8215
卷号23期号:8页码:1447-1460
摘要Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action sequences. To overcome this problem, this paper proposes a new supervised manifold learning algorithm called supervised spatio-temporal neighborhood topology learning (SSTNTL) for action recognition. By analyzing the topological characteristics in the context of action recognition, we propose to construct the neighborhood topology using both supervised spatial and temporal pose correspondence information. Employing the property in locality preserving projection (LPP), SSTNTL solves the generalized eigenvalue problem to obtain the best projections that not only separates data points from different classes, but also preserves local structures and temporal pose correspondence of sequences from the same class. Experimental results demonstrate that SSTNTL outperforms the manifold embedding methods with other topologies or local discriminant information. Moreover, compared with state-of-the-art action recognition algorithms, SSTNTL gives convincing performance for both human and gesture action recognition. © 1991-2012 IEEE.
关键词Action recognition manifold learning neighborhood topology learning supervised spatial temporal pose correspondence
DOI10.1109/TCSVT.2013.2248494
URL查看来源
语种英语English
Scopus入藏号2-s2.0-84881405295
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6539
专题北师香港浸会大学
作者单位
1.Department of Computer Science,Hong Kong Baptist University,Kowloon,Hong Kong
2.PBNU-HKBU United International College,Zhuhai,China
3.Institute of Computational Theoretical Studies,Hong Kong Baptist University,Kowloon,Hong Kong
4.School of Information Science and Technology,Sun Yat-Sen University,Guangzhou 510006,China
5.Guangdong Province Key Laboratory of Information Security,Guangzhou 510006,China
推荐引用方式
GB/T 7714
Ma,Andy J.,Yuen,Pong C.,Zou,Wilman W.W.et al. Supervised spatio-temporal neighborhood topology learning for action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(8): 1447-1460.
APA Ma,Andy J., Yuen,Pong C., Zou,Wilman W.W., & Lai,Jian Huang. (2013). Supervised spatio-temporal neighborhood topology learning for action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 23(8), 1447-1460.
MLA Ma,Andy J.,et al."Supervised spatio-temporal neighborhood topology learning for action recognition". IEEE Transactions on Circuits and Systems for Video Technology 23.8(2013): 1447-1460.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ma,Andy J.]的文章
[Yuen,Pong C.]的文章
[Zou,Wilman W.W.]的文章
百度学术
百度学术中相似的文章
[Ma,Andy J.]的文章
[Yuen,Pong C.]的文章
[Zou,Wilman W.W.]的文章
必应学术
必应学术中相似的文章
[Ma,Andy J.]的文章
[Yuen,Pong C.]的文章
[Zou,Wilman W.W.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。