题名 | BNU-HKBU UIC NLP team 2 at SemEval-2019 task 6: Detecting offensive language using BERT model |
作者 | |
发表日期 | 2019 |
会议名称 | NAACL HLT 2019 - International Workshop on Semantic Evaluation |
会议录名称 | NAACL HLT 2019 - International Workshop on Semantic Evaluation - Proceedings of the 13th Workshop
![]() |
ISBN | 9781950737062 |
页码 | 551-555 |
会议日期 | June 6–June 7, 2019 |
会议地点 | Minneapolis, Minnesota, USA |
摘要 | In this study we deal with the problem of identifying and categorizing offensive language in social media. Our group, BNU-HKBU UIC NLP Team2, use supervised classification along with multiple version of data generated by different ways of pre-processing the data. We then use the state-of-the-art model Bidirectional Encoder Representations from Transformers, or BERT (Devlin et al. (2018)), to capture linguistic, syntactic and semantic features. Long range dependencies between each part of a sentence can be captured by BERT's bidirectional encoder representations. Our results show 85.12% accuracy and 80.57% F1 scores in Subtask A (offensive language identification), 87.92% accuracy and 50% F1 scores in Subtask B (categorization of offense types), and 69.95% accuracy and 50.47% F1 score in Subtask C (offense target identification). Analysis of the results shows that distinguishing between targeted and untargeted offensive language is not a simple task. More work needs to be done on the unbalance data problem in Subtasks B and C. Some future work is also discussed. |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85091389212 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/6839 |
专题 | 理工科技学院 |
作者单位 | Computer Science and Technology,Division of Science and Technology,BNU-HKBU United International College,Zhuhai,Guangdong,China |
第一作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Wu, Zhenghao,Zheng, Hao,Wang, Jianminget al. BNU-HKBU UIC NLP team 2 at SemEval-2019 task 6: Detecting offensive language using BERT model[C], 2019: 551-555. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论