科研成果详情

题名BNU-HKBU UIC NLP team 2 at SemEval-2019 task 6: Detecting offensive language using BERT model
作者
发表日期2019
会议名称NAACL HLT 2019 - International Workshop on Semantic Evaluation
会议录名称NAACL HLT 2019 - International Workshop on Semantic Evaluation - Proceedings of the 13th Workshop
ISBN9781950737062
页码551-555
会议日期June 6–June 7, 2019
会议地点Minneapolis, Minnesota, USA
摘要

In this study we deal with the problem of identifying and categorizing offensive language in social media. Our group, BNU-HKBU UIC NLP Team2, use supervised classification along with multiple version of data generated by different ways of pre-processing the data. We then use the state-of-the-art model Bidirectional Encoder Representations from Transformers, or BERT (Devlin et al. (2018)), to capture linguistic, syntactic and semantic features. Long range dependencies between each part of a sentence can be captured by BERT's bidirectional encoder representations. Our results show 85.12% accuracy and 80.57% F1 scores in Subtask A (offensive language identification), 87.92% accuracy and 50% F1 scores in Subtask B (categorization of offense types), and 69.95% accuracy and 50.47% F1 score in Subtask C (offense target identification). Analysis of the results shows that distinguishing between targeted and untargeted offensive language is not a simple task. More work needs to be done on the unbalance data problem in Subtasks B and C. Some future work is also discussed.

URL查看来源
语种英语English
Scopus入藏号2-s2.0-85091389212
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6839
专题理工科技学院
作者单位
Computer Science and Technology,Division of Science and Technology,BNU-HKBU United International College,Zhuhai,Guangdong,China
第一作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Wu, Zhenghao,Zheng, Hao,Wang, Jianminget al. BNU-HKBU UIC NLP team 2 at SemEval-2019 task 6: Detecting offensive language using BERT model[C], 2019: 551-555.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Zhenghao]的文章
[Zheng, Hao]的文章
[Wang, Jianming]的文章
百度学术
百度学术中相似的文章
[Wu, Zhenghao]的文章
[Zheng, Hao]的文章
[Wang, Jianming]的文章
必应学术
必应学术中相似的文章
[Wu, Zhenghao]的文章
[Zheng, Hao]的文章
[Wang, Jianming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。