题名 | Mapping web usage patterns to MDP model and mining with reinforcement learning |
作者 | |
发表日期 | 2006 |
会议名称 | 2nd International Conference on Fuzzy Systems and Knowledge Discovery |
会议录名称 | Fuzzy Systems and Knowledge Discovery: Second International Conference, FSKD 2005, Changsha, China, August 27-29, 2005, Proceedings, Part II
![]() |
会议录编者 | Lipo Wang, Yaochu Jin |
ISBN | 3540283315 |
ISSN | 0302-9743 |
卷号 | Lecture Notes in Artificial Intelligence, volume 3614 |
页码 | 698-702 |
会议日期 | AUG 27-29, 2005 |
会议地点 | Changsha, China |
摘要 | For many web usage mining applications, it is crucial to compare navigation paths of different users. This paper presents a reinforcement learning based method for mining the sequential usage patterns of user behaviors. In detail, the temporal data set about every user is constructed from the web log file, and then the navigation paths of the users are modelled using the extended Markov decision process. The proposed method could learn the dynamical sequential usage patterns on-line. © Springer-Verlag Berlin Heidelberg 2005. |
DOI | 10.1007/11540007_85 |
URL | 查看来源 |
收录类别 | SCIE ; CPCI-S |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems |
WOS记录号 | WOS:000232218400085 |
Scopus入藏号 | 2-s2.0-33749009295 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/6985 |
专题 | 个人在本单位外知识产出 |
作者单位 | 1.State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing, 210093,China 2.E-business Technology Institute,University of Hongkong,Hong Kong |
推荐引用方式 GB/T 7714 | Gao, Yang,Luo, Zongwei,Li, Ning. Mapping web usage patterns to MDP model and mining with reinforcement learning[C]//Lipo Wang, Yaochu Jin, 2006: 698-702. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Gao, Yang]的文章 |
[Luo, Zongwei]的文章 |
[Li, Ning]的文章 |
百度学术 |
百度学术中相似的文章 |
[Gao, Yang]的文章 |
[Luo, Zongwei]的文章 |
[Li, Ning]的文章 |
必应学术 |
必应学术中相似的文章 |
[Gao, Yang]的文章 |
[Luo, Zongwei]的文章 |
[Li, Ning]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论