科研成果详情

发表状态已发表Published
题名Deep reinforcement learning for computation offloading in mobile edge computing environment
作者
发表日期2021-07-01
发表期刊Computer Communications
ISSN/eISSN0140-3664
卷号175页码:1-12
摘要

Recently, in order to distribute computing, networking resources, services, near terminals, mobile fog is gradually becoming the mobile edge computing (MEC) paradigm. In a mobile fog environment, the quality of service affected by offloading speeds and the fog processing, however the traditional fog method to solve the problem of computation resources allocation is difficult because of the complex network states distribution environment (that is, F-AP states, AP states, mobile device states and code block states). In this paper, to improve the fog resource provisioning performance of mobile devices, the learning-based mobile fog scheme with deep deterministic policy gradient (DDPG) algorithm is proposed. An offloading block pulsating discrete event system is modeled as a Markov Decision Processes (MDPs), which can realize the offloading computing without knowing the transition probabilities among different network states. Furthermore, the DDPG algorithm is used to solve the issue of state spaces explosion and learn an optimal offloading policy on distributed mobile fog computing. The simulation results show that our proposed scheme achieves 20%, 37%, 46% improvement on related performance compared with the policy gradient (PG), deterministic policy gradient (DPG) and actor–critic (AC) methods. Besides, compared with the traditional fog provisioning scheme, our scheme shows better cost performance of fog resource provisioning under different locations number and different task arrival rates.

关键词Computation offloading Deep learning Internet of things (IoT) Markov decision process Mobile edge computing Reinforcement learning
DOI10.1016/j.comcom.2021.04.028
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000678421800001
Scopus入藏号2-s2.0-85105272771
引用统计
被引频次:69[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/7038
专题个人在本单位外知识产出
通讯作者Liu, Anfeng
作者单位
1.School of Computer Science and Engineering, Central South University, ChangSha, 410083, China
2.College of Computer Science and Technology, Huaqiao University, Xiamen, 361021, China
3.School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
推荐引用方式
GB/T 7714
Chen, Miaojiang,Wang, Tian,Zhang, Shaoboet al. Deep reinforcement learning for computation offloading in mobile edge computing environment[J]. Computer Communications, 2021, 175: 1-12.
APA Chen, Miaojiang, Wang, Tian, Zhang, Shaobo, & Liu, Anfeng. (2021). Deep reinforcement learning for computation offloading in mobile edge computing environment. Computer Communications, 175, 1-12.
MLA Chen, Miaojiang,et al."Deep reinforcement learning for computation offloading in mobile edge computing environment". Computer Communications 175(2021): 1-12.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Miaojiang]的文章
[Wang, Tian]的文章
[Zhang, Shaobo]的文章
百度学术
百度学术中相似的文章
[Chen, Miaojiang]的文章
[Wang, Tian]的文章
[Zhang, Shaobo]的文章
必应学术
必应学术中相似的文章
[Chen, Miaojiang]的文章
[Wang, Tian]的文章
[Zhang, Shaobo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。