Details of Research Outputs

Status已发表Published
Title基于时空相关属性模型的公交到站时间预测算法
Alternative TitleBus Arrival Time Prediction Algorithm Based on Spatio-temporal Correlation Attribute Model
Creator
Date Issued2020-03-01
Source Publication软件学报 / Journal of Software
ISSN1000-9825
Volume31Issue:3Pages:648-662
Abstract

公交车辆到站时间的预测是公交调度辅助决策系统的重要依据,可帮助调度员及时发现晚点车辆,并做出合理的调度决策.然而,公交到站时间受交通拥堵、天气、站点停留和站间行驶时长不固定等因素的影响,是一个时空依赖环境下的预测问题,颇具挑战性.提出一种基于深度神经网络的公交到站时间预测算法STPM,算法采用时空组件、属性组件和融合组件预测公交车辆从起点站到终点站的总时长.其中,利用时空组件学习事物的时间依赖性与空间相关性.利用属性组件学习事物外部因素的影响.利用融合组件融合时空组件与属性组件的输出,预测最终结果.实验结果表明,STPM能够很好地结合卷积神经网络与循环神经网络模型的优势,学习关键的时间特征与空间特征,在公交到站时间预测的误差百分比和准确率上的表现均优于已有的预测方法. 

Other Abstract

Bus arrival time prediction is an important basis for the decision-making assistant system of bus dispatching. It helps dispatchers to find late vehicles in time and make reasonable dispatching decisions. However, bus arrival time is influenced by traffic congestion, weather, and variable time when stopping at stations or travelling duration between stations. It is a spatio-temporal dependence problem, which is quite challenging. This study proposes a new algorithm called STPM for bus arrival time prediction based on deep neural network. The algorithm uses space-time components, attribute components and fusion components to predict the total bus arrival time from the starting point to the terminal. In this algorithm, time-dependence and space-time components are used to learn the internal spatio-temporal dependence. It uses attribute components to learn the influence of external factors, uses fusion components to fuse the output of temporal and spatial components, as well as attribute components, to predict the final results. Experimental results show that STPM can combine the advantages of convolutional neural network and recurrent neural network model to learn the key temporal and spatial features. The proposed algorithm outperforms existing methods in terms of the error percentage and accuracy of bus arrival time prediction.

Keyword到站预测 梯度提升树 卷积长短期记忆网络 Arrival forecast ConvLSTM Gradient boosting tree
DOI10.13328/j.cnki.jos.005901
URLView source
Indexed By中文核心期刊要目总览 ; EI ; CSCD
Language中文Chinese
Scopus ID2-s2.0-85083036633
Citation statistics
Cited Times [WOS]:0   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
Identifierhttp://repository.uic.edu.cn/handle/39GCC9TT/7057
CollectionResearch outside affiliated institution
Affiliation
1.厦门大学 信息科学与技术学院 软件工程系,福建 厦门 361005
2.厦门大学 深圳研究院,广东 深圳 518057
3.厦门大学 航空航天学院 自动化系,福建 厦门 361005
4.(中国人民大学 信息学院 计算机系,北京 100872
5.华侨大学 计算机科学与技术学院,福建 厦门 361021
Recommended Citation
GB/T 7714
赖永炫,张璐,杨帆等. 基于时空相关属性模型的公交到站时间预测算法[J]. 软件学报 / Journal of Software, 2020, 31(3): 648-662.
APA 赖永炫, 张璐, 杨帆, 卢卫, & 王田. (2020). 基于时空相关属性模型的公交到站时间预测算法. 软件学报 / Journal of Software, 31(3), 648-662.
MLA 赖永炫,et al."基于时空相关属性模型的公交到站时间预测算法". 软件学报 / Journal of Software 31.3(2020): 648-662.
Files in This Item:
There are no files associated with this item.
Related Services
Usage statistics
Google Scholar
Similar articles in Google Scholar
[赖永炫]'s Articles
[张璐]'s Articles
[杨帆]'s Articles
Baidu academic
Similar articles in Baidu academic
[赖永炫]'s Articles
[张璐]'s Articles
[杨帆]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[赖永炫]'s Articles
[张璐]'s Articles
[杨帆]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.