科研成果详情

发表状态已发表Published
题名Higher order partial least squares for object tracking: A 4D-tracking method
作者
发表日期2016-11-26
发表期刊Neurocomputing
ISSN/eISSN0925-2312
卷号215页码:118-127
摘要

Object tracking has a wide range of applications and great efforts have been spent to build the object appearance model using image features encoded in a vector as observations. Since a video or image sequence is intrinsically a multi-dimensional matrix or a high-order tensor, these methods cannot fully utilize the spatial-temporal correlations within the 2D image ensembles and inevitably lose a lot of useful information. In this paper, we propose a novel 4D object tracking method via the higher order partial least squares (HOPLS) which is a generalized multi-linear regression method. To do so, we first represent each training and testing example as a set of image instances of a target or background object. Then, we view object tracking as a multi-class classification problem and construct the 4D data matrix and 2D labeling matrix for HOPLS. Furthermore, we use HOPLS to adaptively learn low-dimensional discriminative feature subspace for object representation. Finally, a simple yet effective updating schema is used to update the object appearance model. Experimental results on challenging video sequences demonstrate the robustness and effectiveness of the proposed 4D tracking method.

关键词4D Higher order partial least squares Multi-class classification Multi-dimensional data Object tracking
DOI10.1016/j.neucom.2015.09.138
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000387300700013
Scopus入藏号2-s2.0-84992504040
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/7253
专题个人在本单位外知识产出
通讯作者Cui, Zhen
作者单位
1.Department of Computer Science and Technology, Huaqiao University, China
2.Department of Computer Science and Engineering, University of Oulu, Finland
推荐引用方式
GB/T 7714
Zhong, Bineng,Yang, Xiangnan,Shen, Yingjuet al. Higher order partial least squares for object tracking: A 4D-tracking method[J]. Neurocomputing, 2016, 215: 118-127.
APA Zhong, Bineng., Yang, Xiangnan., Shen, Yingju., Wang, Cheng., Wang, Tian., .. & Chen, Duansheng. (2016). Higher order partial least squares for object tracking: A 4D-tracking method. Neurocomputing, 215, 118-127.
MLA Zhong, Bineng,et al."Higher order partial least squares for object tracking: A 4D-tracking method". Neurocomputing 215(2016): 118-127.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhong, Bineng]的文章
[Yang, Xiangnan]的文章
[Shen, Yingju]的文章
百度学术
百度学术中相似的文章
[Zhong, Bineng]的文章
[Yang, Xiangnan]的文章
[Shen, Yingju]的文章
必应学术
必应学术中相似的文章
[Zhong, Bineng]的文章
[Yang, Xiangnan]的文章
[Shen, Yingju]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。