科研成果详情

发表状态已发表Published
题名Outliers and influential observations in ridge mean shift regression
作者
发表日期1995-01
发表期刊Systems Science and Mathematical Sciences
卷号8期号:1页码:12-26
摘要

In the mean shift regression, it is of interest to detect anomalous observations that provide some large residuals or exert some unduly large influences on the least square analysis when the chosen model is fitted to the data, which are known as outliers or influential observations, respectively. The existence of outliers and influential observations, however, are complicated by the presence of a collinearity, which has great effects on the influences of a set of observations. In this paper, we show that when a ridge mean shift regression is used to mitigate the effects of the collinearity, the influences of some observations can be drastically modified. This is illustrated with an example derived from a set of data given by Mickey, Dunn and Clark[1]. Recommendations are given for obtaining the best use of the procedures.

关键词Outliers influential observations ridge mean shift regression ridge residuals
URL查看来源
语种英语English
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/8442
专题个人在本单位外知识产出
作者单位
1.Institute of Applied Mathematics, Yunnan Province, Kunming 650091, China
2.Department of Mathematics, Yunnan University, Kunming 650091, China
推荐引用方式
GB/T 7714
Pan, Jianxin,XIONG, Haiyan. Outliers and influential observations in ridge mean shift regression[J]. Systems Science and Mathematical Sciences, 1995, 8(1): 12-26.
APA Pan, Jianxin, & XIONG, Haiyan. (1995). Outliers and influential observations in ridge mean shift regression. Systems Science and Mathematical Sciences, 8(1), 12-26.
MLA Pan, Jianxin,et al."Outliers and influential observations in ridge mean shift regression". Systems Science and Mathematical Sciences 8.1(1995): 12-26.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Pan, Jianxin]的文章
[XIONG, Haiyan]的文章
百度学术
百度学术中相似的文章
[Pan, Jianxin]的文章
[XIONG, Haiyan]的文章
必应学术
必应学术中相似的文章
[Pan, Jianxin]的文章
[XIONG, Haiyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。