发表状态 | 已发表Published |
题名 | An End-to-End No-Reference Video Quality Assessment Method With Hierarchical Spatiotemporal Feature Representation |
作者 | |
发表日期 | 2022 |
发表期刊 | IEEE Transactions on Broadcasting
![]() |
ISSN/eISSN | 0018-9316 |
摘要 | In this paper, we propose a deep neural network-based no-reference (NR) video quality assessment (VQA) method with spatiotemporal feature fusion and hierarchical information integration to evaluate the perceptual quality of videos. First, a feature extraction model is proposed by using 2D and 3D convolutional layers to gradually extract spatiotemporal features from raw video clips. Second, we design a hierarchical branching network to fuse multiframe features, and the feature vectors at each hierarchical level are comprehensively considered during the process of network optimization. Finally, these two modules and quality regression are synthesized into an end-to-end architecture. Experimental results obtained on benchmark VQA databases demonstrate the superiority of our method over other state-of-the-art algorithms. The source code is available online.1 |
关键词 | deep neural network Feature extraction Neural networks Quality assessment spatiotemporal information Spatiotemporal phenomena Streaming media Video quality assessment Video recording Visualization |
DOI | 10.1109/TBC.2022.3164332 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Engineering ; Telecommunications |
WOS类目 | Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000782824500001 |
Scopus入藏号 | 2-s2.0-85128292002 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/8924 |
专题 | 理工科技学院 |
作者单位 | 1.School of Computer Science, Chongqing University, Chongqing 400030, China 2.Department of Computer Science, City University of Hong Kong, Hong Kong 3.BNU-UIC Institute of Artificial Intelligence and Future Networks, Beijing Normal University at Zhuhai, Zhuhai 519088, Guangdong, China, and also with the Guangdong Key Laboratory of AI Multi Modal Data Processing, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China |
推荐引用方式 GB/T 7714 | Shen, Wenhao,Zhou, Mingliang,Liao, Xingranet al. An End-to-End No-Reference Video Quality Assessment Method With Hierarchical Spatiotemporal Feature Representation[J]. IEEE Transactions on Broadcasting, 2022. |
APA | Shen, Wenhao., Zhou, Mingliang., Liao, Xingran., Jia, Weijia., Xiang, Tao., .. & Shang, Zhaowei. (2022). An End-to-End No-Reference Video Quality Assessment Method With Hierarchical Spatiotemporal Feature Representation. IEEE Transactions on Broadcasting. |
MLA | Shen, Wenhao,et al."An End-to-End No-Reference Video Quality Assessment Method With Hierarchical Spatiotemporal Feature Representation". IEEE Transactions on Broadcasting (2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论