科研成果详情

发表状态已发表Published
题名An End-to-End No-Reference Video Quality Assessment Method With Hierarchical Spatiotemporal Feature Representation
作者
发表日期2022
发表期刊IEEE Transactions on Broadcasting
ISSN/eISSN0018-9316
摘要

In this paper, we propose a deep neural network-based no-reference (NR) video quality assessment (VQA) method with spatiotemporal feature fusion and hierarchical information integration to evaluate the perceptual quality of videos. First, a feature extraction model is proposed by using 2D and 3D convolutional layers to gradually extract spatiotemporal features from raw video clips. Second, we design a hierarchical branching network to fuse multiframe features, and the feature vectors at each hierarchical level are comprehensively considered during the process of network optimization. Finally, these two modules and quality regression are synthesized into an end-to-end architecture. Experimental results obtained on benchmark VQA databases demonstrate the superiority of our method over other state-of-the-art algorithms. The source code is available online.1

关键词deep neural network Feature extraction Neural networks Quality assessment spatiotemporal information Spatiotemporal phenomena Streaming media Video quality assessment Video recording Visualization
DOI10.1109/TBC.2022.3164332
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Engineering ; Telecommunications
WOS类目Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000782824500001
Scopus入藏号2-s2.0-85128292002
引用统计
被引频次:32[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/8924
专题理工科技学院
作者单位
1.School of Computer Science, Chongqing University, Chongqing 400030, China
2.Department of Computer Science, City University of Hong Kong, Hong Kong
3.BNU-UIC Institute of Artificial Intelligence and Future Networks, Beijing Normal University at Zhuhai, Zhuhai 519088, Guangdong, China, and also with the Guangdong Key Laboratory of AI Multi Modal Data Processing, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China
推荐引用方式
GB/T 7714
Shen, Wenhao,Zhou, Mingliang,Liao, Xingranet al. An End-to-End No-Reference Video Quality Assessment Method With Hierarchical Spatiotemporal Feature Representation[J]. IEEE Transactions on Broadcasting, 2022.
APA Shen, Wenhao., Zhou, Mingliang., Liao, Xingran., Jia, Weijia., Xiang, Tao., .. & Shang, Zhaowei. (2022). An End-to-End No-Reference Video Quality Assessment Method With Hierarchical Spatiotemporal Feature Representation. IEEE Transactions on Broadcasting.
MLA Shen, Wenhao,et al."An End-to-End No-Reference Video Quality Assessment Method With Hierarchical Spatiotemporal Feature Representation". IEEE Transactions on Broadcasting (2022).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shen, Wenhao]的文章
[Zhou, Mingliang]的文章
[Liao, Xingran]的文章
百度学术
百度学术中相似的文章
[Shen, Wenhao]的文章
[Zhou, Mingliang]的文章
[Liao, Xingran]的文章
必应学术
必应学术中相似的文章
[Shen, Wenhao]的文章
[Zhou, Mingliang]的文章
[Liao, Xingran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。