科研成果详情

题名Self-adapted Frame Selection Module: Refine the Input Strategy for Video Saliency Detection
作者
发表日期2022
会议名称21st International Conference on Algorithms and Architectures for Parallel Processing
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN978-303095387-4
ISSN0302-9743
卷号13156 LNCS
页码509-516
会议日期DEC 03-04, 2021
会议地点Electronic Network
摘要

Video saliency detection is intended to interpret the human visual system by modeling and predicting while observing a dynamic scene. This method is currently widely used in a variety of devices, including surveillance cameras and Internet-of-Things sensors. Traditionally, each video contains a large amount of redundancies in consecutive frames, while the common practices concentrate on extending the range of input frames to resist the uncertainty of input images. In order to overcome this problem, we propose Self-Adapted Frame Selection (SAFS) module that removes redundant information and selects frames that are highly informative. Furthermore, the module has high robustness and extensive application dealing with complex video contents, such as fast moving scene and images from different scenes. Since predicting the saliency map across multiple scenes is challenging, we establish a set of benchmarking videos for the scene change scenario. Specifically, our method combined with TASED-NET achieves significant improvements on the DHF1K dataset as well as the scene change dataset.

关键词Deep learning Mobile edge computing Refine input frames Video saliency detection
DOI10.1007/978-3-030-95388-1_33
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000771731500033
Scopus入藏号2-s2.0-85126225790
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/8939
专题理工科技学院
通讯作者Wang, Yang
作者单位
1.BNU-UIC Institute of Artificial Intelligence and Future Networks, Beijing Normal University (BNU Zhuhai),Zhuhai, Guangdong, China
2.Southwest Petroleum University, Chengdu, Sichuan, China
3.Guangdong Key Lab of AI and Multi-Modal Data Processing, BNU-HKBU United International College, Zhuhai, China
4.Shenzhen University, Shenzhen, China
第一作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Wu, Shangrui,Wang, Yang,Wang, Tianet al. Self-adapted Frame Selection Module: Refine the Input Strategy for Video Saliency Detection[C], 2022: 509-516.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Shangrui]的文章
[Wang, Yang]的文章
[Wang, Tian]的文章
百度学术
百度学术中相似的文章
[Wu, Shangrui]的文章
[Wang, Yang]的文章
[Wang, Tian]的文章
必应学术
必应学术中相似的文章
[Wu, Shangrui]的文章
[Wang, Yang]的文章
[Wang, Tian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。