题名 | Self-adapted Frame Selection Module: Refine the Input Strategy for Video Saliency Detection |
作者 | |
发表日期 | 2022 |
会议名称 | 21st International Conference on Algorithms and Architectures for Parallel Processing |
会议录名称 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
![]() |
ISBN | 978-303095387-4 |
ISSN | 0302-9743 |
卷号 | 13156 LNCS |
页码 | 509-516 |
会议日期 | DEC 03-04, 2021 |
会议地点 | Electronic Network |
摘要 | Video saliency detection is intended to interpret the human visual system by modeling and predicting while observing a dynamic scene. This method is currently widely used in a variety of devices, including surveillance cameras and Internet-of-Things sensors. Traditionally, each video contains a large amount of redundancies in consecutive frames, while the common practices concentrate on extending the range of input frames to resist the uncertainty of input images. In order to overcome this problem, we propose Self-Adapted Frame Selection (SAFS) module that removes redundant information and selects frames that are highly informative. Furthermore, the module has high robustness and extensive application dealing with complex video contents, such as fast moving scene and images from different scenes. Since predicting the saliency map across multiple scenes is challenging, we establish a set of benchmarking videos for the scene change scenario. Specifically, our method combined with TASED-NET achieves significant improvements on the DHF1K dataset as well as the scene change dataset. |
关键词 | Deep learning Mobile edge computing Refine input frames Video saliency detection |
DOI | 10.1007/978-3-030-95388-1_33 |
URL | 查看来源 |
收录类别 | CPCI-S |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering ; Computer Science, Theory & Methods |
WOS记录号 | WOS:000771731500033 |
Scopus入藏号 | 2-s2.0-85126225790 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/8939 |
专题 | 理工科技学院 |
通讯作者 | Wang, Yang |
作者单位 | 1.BNU-UIC Institute of Artificial Intelligence and Future Networks, Beijing Normal University (BNU Zhuhai),Zhuhai, Guangdong, China 2.Southwest Petroleum University, Chengdu, Sichuan, China 3.Guangdong Key Lab of AI and Multi-Modal Data Processing, BNU-HKBU United International College, Zhuhai, China 4.Shenzhen University, Shenzhen, China |
第一作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Wu, Shangrui,Wang, Yang,Wang, Tianet al. Self-adapted Frame Selection Module: Refine the Input Strategy for Video Saliency Detection[C], 2022: 509-516. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论