科研成果详情

状态已发表Published
题名Remote sensing in urban forestry: Recent applications and future directions
作者
发表日期2019-05-01
发表期刊Remote Sensing
ISSN2072-4292
卷号11
期号10
摘要

Increasing recognition of the importance of urban forest ecosystem services calls for the sustainable management of urban forests, which requires timely and accurate information on the status, trends and interactions between socioeconomic and ecological processes pertaining to urban forests. In this regard, remote sensing, especially with its recent advances in sensors and data processing methods, has emerged as a premier and useful observational and analytical tool. This study summarises recent remote sensing applications in urban forestry from the perspective of three distinctive themes: multi-source, multi-temporal and multi-scale inputs. It reviews how different sources of remotely sensed data offer a fast, replicable and scalable way to quantify urban forest dynamics at varying spatiotemporal scales on a case-by-case basis. Combined optical imagery and LiDAR data results as the most promising among multi-source inputs; in addition, future efforts should focus on enhancing data processing efficiency. For long-term multi-temporal inputs, in the event satellite imagery is the only available data source, future work should improve haze-/cloud-removal techniques for enhancing image quality. Current attention given to multi-scale inputs remains limited; hence, future studies should be more aware of scale effects and cautiously draw conclusions.

关键词Ecosystem services LiDAR Multi-source data Remote sensing Urban forest
DOI10.3390/rs11101144
相关网址查看来源
收录类别SCIE ; SSCI
语种英语English
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000480524800002
Scopus入藏号2-s2.0-85066764532
引用统计
文献类型评论文章
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9058
专题个人在本单位外知识产出
通讯作者Lafortezza, Raffaele
作者单位
1.Department of Geography,The University of Hong Kong,Pokfulam Road,Hong Kong,China
2.Department of Agricultural and Environmental Sciences,University of Bari 'Aldo Moro',Bari,Via Amendola 165/A,70126,Italy
推荐引用方式
GB/T 7714
Li, Xun,Chen, Wendy Y.,Sanesi, Giovanniet al. Remote sensing in urban forestry: Recent applications and future directions. 2019.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Xun]的文章
[Chen, Wendy Y.]的文章
[Sanesi, Giovanni]的文章
百度学术
百度学术中相似的文章
[Li, Xun]的文章
[Chen, Wendy Y.]的文章
[Sanesi, Giovanni]的文章
必应学术
必应学术中相似的文章
[Li, Xun]的文章
[Chen, Wendy Y.]的文章
[Sanesi, Giovanni]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。