科研成果详情

发表状态已发表Published
题名Minimizing Misinformation Profit in Social Networks
作者
发表日期2019-12-01
发表期刊IEEE Transactions on Computational Social Systems
ISSN/eISSN2329-924X
卷号6期号:6页码:1206-1218
摘要

The widespread and effective online social networks may cause misinformation to diffuse in the networks, which could lead to public panic and even serious economic consequences. The classical misinformation containment (MC) problem aims to select a small node set as positive seeds to compete against the misinformation and limit the influence of misinformation as much as possible, where the misinformation seed set is given. Most of the prior works concentrate on either minimizing the number of users infected by misinformation or maximizing the number of users protected by the positive cascade. That is, they only concentrate on optimizing the number of nodes. However, the interaction effects between nodes differ from user to user and the related profit obtained from interaction activities may also be different. This article proposes a novel problem, called profit minimization of misinformation (PMM), which is the first to analyze the profit of activity in the MC problem. Given a misinformation seed set, the PMM problem aims at selecting a node set satisfying the cardinality constraint to minimize the profit of edges starting from infected nodes but ending at infected or protected nodes. Based on the sandwich method, we design a data-dependent approximation scheme for the PMM problem. We approximate the upper and lower bounds of the objective in the equivalent problem by the reverse influence sampling technique. Our algorithm is verified on realistic data sets, which demonstrate the superiority of our method.

关键词Approximation algorithm misinformation containment (MC) sandwich social network
DOI10.1109/TCSS.2019.2944120
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号WOS:000502853400007
Scopus入藏号2-s2.0-85074518950
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9164
专题个人在本单位外知识产出
通讯作者Liu, Wenjing
作者单位
1.School of Mathematical Sciences,Ocean University of China,Qingdao,266100,China
2.Department of Computer Science,University of Texas at Dallas,Richardson,75080,United States
推荐引用方式
GB/T 7714
Chen, Tiantian,Liu, Wenjing,Fang, Qizhiet al. Minimizing Misinformation Profit in Social Networks[J]. IEEE Transactions on Computational Social Systems, 2019, 6(6): 1206-1218.
APA Chen, Tiantian, Liu, Wenjing, Fang, Qizhi, Guo, Jianxiong, & Du, Ding Zhu. (2019). Minimizing Misinformation Profit in Social Networks. IEEE Transactions on Computational Social Systems, 6(6), 1206-1218.
MLA Chen, Tiantian,et al."Minimizing Misinformation Profit in Social Networks". IEEE Transactions on Computational Social Systems 6.6(2019): 1206-1218.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Tiantian]的文章
[Liu, Wenjing]的文章
[Fang, Qizhi]的文章
百度学术
百度学术中相似的文章
[Chen, Tiantian]的文章
[Liu, Wenjing]的文章
[Fang, Qizhi]的文章
必应学术
必应学术中相似的文章
[Chen, Tiantian]的文章
[Liu, Wenjing]的文章
[Fang, Qizhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。