科研成果详情

题名Active testing: An unbiased evaluation method for distantly supervised relation extraction
作者
发表日期2020
会议名称Findings of the Association for Computational Linguistics, ACL 2020: EMNLP 2020
会议录名称Findings of the Association for Computational Linguistics Findings of ACL: EMNLP 2020
ISBN978-195214890-3
页码204-211
会议日期NOV 16-20, 2020
会议地点Electronic Network
摘要

Distant supervision has been a widely used method for neural relation extraction for its convenience of automatically labeling datasets. However, existing works on distantly supervised relation extraction suffer from the low quality of test set, which leads to considerable biased performance evaluation. These biases not only result in unfair evaluations but also mislead the optimization of neural relation extraction. To mitigate this problem, we propose a novel evaluation method named active testing through utilizing both the noisy test set and a few manual annotations. Experiments on a widely used benchmark show that our proposed approach can yield approximately unbiased evaluations for distantly supervised relation extractors.

URL查看来源
语种英语English
Scopus入藏号2-s2.0-85108133461
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9379
专题理工科技学院
通讯作者Jia, Weijia
作者单位
1.Dept. of CSE, Shanghai Jiao Tong University, Shanghai, China
2.ByteDance AI Lab
3.Institute of AI and Future Networks, Beijing Normal University (Zhuhai), UIC, China
4.American University of Sharjah, Sharjah, United Arab Emirates
推荐引用方式
GB/T 7714
Li, Pengshuai,Zhang, Xinsong,Jia, Weijiaet al. Active testing: An unbiased evaluation method for distantly supervised relation extraction[C], 2020: 204-211.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Pengshuai]的文章
[Zhang, Xinsong]的文章
[Jia, Weijia]的文章
百度学术
百度学术中相似的文章
[Li, Pengshuai]的文章
[Zhang, Xinsong]的文章
[Jia, Weijia]的文章
必应学术
必应学术中相似的文章
[Li, Pengshuai]的文章
[Zhang, Xinsong]的文章
[Jia, Weijia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。