×
Verification Code:
换一张
Forgotten Password?
Stay signed in
×
Login
中文
|
English
BNBU
|
Library
Login
Register
Home
Publications
Faculty/School
Scholars
Analysis
Search
ALL
ORCID
Title
Creator
Date Issued
Keyword
Document Type
Original Document Type
Indexed By
Publisher
Status
Collection
Faculty of Science and Tech...
1
Research outside affiliated...
6
Authors
SUN Weiwei
7
Document Type
Journal article
7
Date Issued
2020
1
2018
1
2016
1
2015
1
2014
1
2013
1
More...
Language
英语English
7
Indexed By
SCIE
7
Funding Organization
Keyword
Fully linearized scheme
3
Superconductivity
3
Mixed finite element method
2
Difference schemes
1
Finite element methods
1
Galerkin FEM
1
More...
Source Publication
International Journal of Nu...
2
Journal of Computational Ph...
2
Advances in Computational M...
1
SIAM Journal on Numerical A...
1
SIAM Journal on Scientific ...
1
Funding Project
×
Knowledge Map
Feedback
Browse/Search Results: 1-7 of 7
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Efficient galerkin-mixed fems for incompressible miscible flow in porous media
Journal article
International Journal of Numerical Analysis and Modeling,2020, volume: 17, issue: 3, pages: 350-367
Authors:
Sun, Weiwei
;
Wu, Chengda
Favorite
  |  
View/Download:10/0
  |  
Submit date:2021/04/23
Fully linearized scheme
Galerkin-mixed FEM
Incompressible miscible flow in porous media
Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg-Landau equations of superconductivity
Journal article
Advances in Computational Mathematics,2018, volume: 44, issue: 3, pages: 923-949
Authors:
Gao, Huadong
;
Sun, Weiwei
Favorite
  |  
View/Download:5/0
  |  
Submit date:2021/06/02
Ginzburg-Landau equation
Linearized scheme
Mixed finite element method
Optimal error estimate
Superconductivity
Unconditional convergence
A new mixed formulation and efficient numerical solution of ginzburg-landau equations under the temporal gauge
Journal article
SIAM Journal on Scientific Computing,2016, volume: 38, issue: 3, pages: A1339-A1357
Authors:
Gao, Huadong
;
Sun, Weiwei
Favorite
  |  
View/Download:4/0
  |  
Submit date:2021/06/02
Finite element methods
Fully linearized scheme
Ginzburg-landau equations
Magnetic field
Mixed formulation
Superconductivity
An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity
Journal article
Journal of Computational Physics,2015, volume: 294, pages: 329-345
Authors:
Gao, Huadong
;
Sun, Weiwei
Favorite
  |  
View/Download:4/0
  |  
Submit date:2021/06/02
Fully linearized scheme
Ginzburg-Landau equations
Mixed finite element method
Superconductivity
Vortex motion
Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations
Journal article
SIAM Journal on Numerical Analysis,2014, volume: 52, issue: 2, pages: 933-954
Authors:
Li, Buyang
;
Gao, Huadong
;
Sun, Weiwei
Favorite
  |  
View/Download:3/0
  |  
Submit date:2021/05/12
unconditional optimal error analysis
linearized Crank-Nicolson scheme
Galerkin FEM
nonlinear thermistor equations
Error analysis of linearized semi-implicit galerkin finite element methods for nonlinear parabolic equations
Journal article
International Journal of Numerical Analysis and Modeling,2013, volume: 10, issue: 3, pages: 622-633
Authors:
Li, Buyang
;
Sun, Weiwei
Favorite
  |  
View/Download:3/0
  |  
Submit date:2021/06/02
Galerkin method
Linearized semi- implicit scheme
Nonlinear parabolic system
Unconditionally optimal error estimate
Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation
Journal article
Journal of Computational Physics,1999, volume: 148, issue: 2, pages: 397-415
Authors:
Chang, Qianshun
;
Jia, Erhui
;
Sun, Weiwei
Favorite
  |  
View/Download:6/0
  |  
Submit date:2021/06/02
Difference schemes
Generalized Schrödinger equation
Linearized Crank-Nicolson scheme