×
Verification Code:
换一张
Forgotten Password?
Stay signed in
×
Login
中文
|
English
BNBU
|
Library
Login
Register
Home
Publications
Faculty/School
Scholars
Analysis
Search
ALL
ORCID
Title
Creator
Date Issued
Keyword
Document Type
Original Document Type
Indexed By
Publisher
Status
Collection
Faculty of Science and Tech...
2
Research outside affiliated...
5
Authors
SUN Weiwei
4
TANG Tao
3
Document Type
Journal article
7
Date Issued
2022
1
2020
1
2014
2
2001
1
2000
1
1999
1
More...
Language
英语English
7
Indexed By
SCIE
7
Funding Organization
Keyword
Conservation laws
3
Error estimates
3
Optimal convergence rate
3
Viscosity approximation
2
Crank-Nicolson scheme
1
Finite element method
1
More...
Source Publication
SIAM Journal on Numerical A...
4
IMA Journal of Numerical An...
2
SIAM Journal on Mathematica...
1
Funding Project
×
Knowledge Map
Feedback
Browse/Search Results: 1-7 of 7
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Analysis of backward Euler projection FEM for the Landau-Lifshitz equation
Journal article
IMA Journal of Numerical Analysis,2022, volume: 42, issue: 3, pages: 2336-2360
Authors:
An, Rong
;
Sun, Weiwei
Favorite
  |  
View/Download:8/0
  |  
Submit date:2022/09/05
Finite element method
Landau-lifshitz equation
Optimal error estimates
Projection method
Optimal error estimates and recovery technique of a mixed finite element method for nonlinear thermistor equations
Journal article
IMA Journal of Numerical Analysis,2020, volume: 41, issue: 4, pages: 3175-3200
Authors:
Gao, Huadong
;
Sun, Weiwei
;
Wu, Chengda
Favorite
  |  
View/Download:10/0
  |  
Submit date:2021/09/17
nonlinear parabolic system
optimal error estimates: mixed finite element methods
thermistor equations
semi-implicit scheme
Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity
Journal article
SIAM Journal on Numerical Analysis,2014, volume: 52, issue: 3, pages: 1183-1202
Authors:
Gao, Huadong
;
Li, Buyang
;
Sun, Weiwei
Favorite
  |  
View/Download:4/0
  |  
Submit date:2021/05/12
optimal error estimates
finite element methods
Ginzburg Landau equations
Crank-Nicolson scheme
superconductivity
unconditional stability
A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media
Journal article
SIAM Journal on Numerical Analysis,2014, volume: 52, issue: 6, pages: 3000-3020
Authors:
Wang, Jilu
;
Si, Zhiyong
;
Sun, Weiwei
Favorite
  |  
View/Download:5/0
  |  
Submit date:2021/05/12
unconditionally optimal error estimates
modified method of characteristics
mixed finite element method
incompressible miscible flow
On the regularity of approximate solutions to conservation laws with piecewise smooth solutions
Journal article
SIAM Journal on Numerical Analysis,2001, volume: 38, issue: 5, pages: 1483-1495
Authors:
Tang, Tao
;
Teng, Zhenhuan
Favorite
  |  
View/Download:4/0
  |  
Submit date:2021/05/10
Conservation laws
Error estimates
Optimal convergence rate
Viscosity approximation
Pointwise error estimates for relaxation approximations to conservation laws
Journal article
SIAM Journal on Mathematical Analysis,2000, volume: 32, issue: 4, pages: 870-886
Authors:
Tadmor, Eitan
;
Tang, Tao
Favorite
  |  
View/Download:3/0
  |  
Submit date:2021/05/10
Conservation laws
Error estimates
Maximum principle
One-sided interpolation inequality
Optimal convergence rate
Relaxation method
Pointwise error estimates for scalar conservation laws with piecewise smooth solutions
Journal article
SIAM Journal on Numerical Analysis,1999, volume: 36, issue: 6, pages: 1739-1758
Authors:
Tadmor, Eitan
;
Tang, Tao
Favorite
  |  
View/Download:3/0
  |  
Submit date:2021/05/10
Conservation laws
Error estimates
Optimal convergence rate
Transport inequality
Viscosity approximation