×
Verification Code:
换一张
Forgotten Password?
Stay signed in
×
Login
中文
|
English
BNBU
|
Library
Login
Register
Home
Publications
Faculty/School
Scholars
Analysis
Search
ALL
ORCID
Title
Creator
Date Issued
Keyword
Document Type
Original Document Type
Indexed By
Publisher
Status
Collection
Faculty of Science and Tech...
7
Research outside affiliated...
8
Authors
TANG Tao
11
DI Yana
2
Document Type
Journal article
13
Conference paper
2
Date Issued
2024
1
2023
1
2022
3
2020
2
2019
1
2018
1
More...
Language
英语English
15
Indexed By
SCIE
12
CPCI-S
1
Funding Organization
Keyword
Energy stability
3
Phase-field models
3
Cahn-Hilliard equation
2
Finite element method
2
Moving mesh method
2
Phase field
2
More...
Source Publication
Journal of Computational Ph...
5
Communications in Computati...
2
Journal of Scientific Compu...
2
SIAM Journal on Scientific ...
2
CSIAM Transactions on Appli...
1
Journal of Computational an...
1
More...
Funding Project
×
Knowledge Map
Feedback
Browse/Search Results: 1-10 of 15
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
ENERGY DIMINISHING IMPLICIT-EXPLICIT RUNGE–KUTTA METHODS FOR GRADIENT FLOWS
Journal article
Mathematics of Computation,2024, volume: 93, issue: 350, pages: 2745-2767
Authors:
Fu, Zhaohui
;
Tang, Tao
;
Yang, Jiang
Favorite
  |  
View/Download:8/0
  |  
Submit date:2024/11/04
energy stability
gradient flows
IMEX Runge–Kutta
phase field equations
Stabilized enhancement for large time computation using exponential spectral process method
Journal article
Journal of Computational Physics,2023, volume: 482
Authors:
Wang, Xiang
Favorite
  |  
View/Download:4/0
  |  
Submit date:2023/07/03
Exponential spectral process
Exponential time differencing
Phase field
Spectral method
Arbitrarily High Order and Fully Discrete Extrapolated RK–SAV/DG Schemes for Phase-field Gradient Flows
Journal article
Journal of Scientific Computing,2022, volume: 93, issue: 2
Authors:
Tang, Tao
;
Wu, Xu
;
Yang, Jiang
Favorite
  |  
View/Download:14/0
  |  
Submit date:2023/02/14
Allen–Cahn equation
Cahn–Hilliard equation
Convergence and error analysis
Energy stability
Gradient flows
Phase-field models
A phase field model for mass transport with semi-permeable interfaces
Journal article
Journal of Computational Physics,2022, volume: 464
Authors:
Qin, Yuzhe
;
Huang, Huaxiong
;
Zhu, Yi
;
Liu, Chun
;
Xu, Shixin
Favorite
  |  
View/Download:17/0
  |  
Submit date:2022/09/05
Mass transport
Phase field method
Restricted diffusion
Sharp interface limit
Sharp Error Estimate of an Implicit BDF2 Scheme with Variable Time Steps for the Phase Field Crystal Model
Journal article
Journal of Scientific Computing,2022, volume: 92, issue: 2
Authors:
Di, Yana
;
Wei, Yifan
;
Zhang, Jiwei
;
Zhao, Chengchao
Favorite
  |  
View/Download:6/0
  |  
Submit date:2022/09/05
BDF2
DOC and DCC kernels
Modified energy dissipation law
Phase field model
Sharp error estimate
An energy stable C0 finite element scheme for a quasi-incompressible phase-field model of moving contact line with variable density
Journal article
Journal of Computational Physics,2020, volume: 405
Authors:
Shen, Lingyue
;
Huang, Huaxiong
;
Lin, Ping
;
Song, Zilong
;
Xu, Shixin
Favorite
  |  
View/Download:15/0
  |  
Submit date:2021/04/23
C0 finite element
Energy stability
Large density ratio
Moving contact lines
Phase-field method
Quasi-incompressible
How to Define Dissipation-Preserving Energy for Time-Fractional Phase-Field Equations
Journal article
CSIAM Transactions on Applied Mathematics,2020, volume: 1, issue: 3, pages: 478-490
Authors:
Quan, Chaoyu
;
Tang, Tao
;
Yang, Jiang
Favorite
  |  
View/Download:13/0
  |  
Submit date:2021/08/05
Phase-field equation
energy dissipation
Caputo fractional derivative
Allen-Cahn equations
Cahn-Hilliard equations
positive definite kernel
On energy dissipation theory and numerical stability for time-fractional phase-field equations
Journal article
SIAM Journal on Scientific Computing,2019, volume: 41, issue: 6, pages: A3757-A3778
Authors:
Tang, Tao
;
Yu, Haijun
;
Zhou, Tao
Adobe PDF(1073Kb)
  |  
Favorite
  |  
View/Download:41/5
  |  
Submit date:2021/04/23
Allen-Cahn equation
Cahn-Hilliard equation
Energy dissipation law
Maximum principle
MBE model
Time-fractional phase-field equations
On effective numerical methods for phase-field models
Conference paper
Proceedings of the International Congress of Mathematicians, ICM 2018, Rio de Janeiro, 2018.8.1-2018.8.9
Authors:
Tang, Tao
Favorite
  |  
View/Download:20/0
  |  
Submit date:2021/05/10
Adaptivity
Energy stability
Phase field equations
Fast and stable explicit operator splitting methods for phase-field models
Journal article
Journal of Computational Physics,2015, volume: 303, pages: 45-65
Authors:
Cheng, Yuanzhen
;
Kurganov, Alexander
;
Qu, Zhuolin
;
Tang, Tao
Favorite
  |  
View/Download:5/0
  |  
Submit date:2021/05/10
Adaptive time-stepping
Cahn-Hilliard equation
Large stability domain explicit Runge-Kutta methods
Molecular beam epitaxy equation
Operator splitting methods
Phase-field models
Pseudo-spectral methods
Semi-discrete finite-difference schemes