科研成果详情

发表状态已发表Published
题名Least squares estimation for path-distribution dependent stochastic differential equations
作者
发表日期2021-12-01
发表期刊Applied Mathematics and Computation
ISSN/eISSN0096-3003
卷号410
摘要

We study a least squares estimator for an unknown parameter in the drift coefficient of a path-distribution dependent stochastic differential equation involving a small dispersion parameter ε>0. The estimator, based on n (where n∈N) discrete time observations of the stochastic differential equation, is shown to be convergent weakly to the true value as ε→0 and n→∞. This indicates that the least squares estimator obtained is consistent with the true value. Moreover, we obtain the rate of convergence and derive the asymptotic distribution of least squares estimator.

关键词Asymptotic distribution Consistency Least squares estimator Path-distribution dependent stochastic differential equation
DOI10.1016/j.amc.2021.126457
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000685357700013
Scopus入藏号2-s2.0-85108877466
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10484
专题个人在本单位外知识产出
通讯作者Wu, Jianglun
作者单位
Department of Mathematics,Swansea University,Swansea,Bay Campus,SA1 8EN,United Kingdom
推荐引用方式
GB/T 7714
Ren, Panpan,Wu, Jianglun. Least squares estimation for path-distribution dependent stochastic differential equations[J]. Applied Mathematics and Computation, 2021, 410.
APA Ren, Panpan, & Wu, Jianglun. (2021). Least squares estimation for path-distribution dependent stochastic differential equations. Applied Mathematics and Computation, 410.
MLA Ren, Panpan,et al."Least squares estimation for path-distribution dependent stochastic differential equations". Applied Mathematics and Computation 410(2021).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ren, Panpan]的文章
[Wu, Jianglun]的文章
百度学术
百度学术中相似的文章
[Ren, Panpan]的文章
[Wu, Jianglun]的文章
必应学术
必应学术中相似的文章
[Ren, Panpan]的文章
[Wu, Jianglun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。