科研成果详情

发表状态已发表Published
题名A Bayesian multistage spatio-temporally dependent model for spatial clustering and variable selection
作者
发表日期2023-11-20
发表期刊Statistics in Medicine
ISSN/eISSN0277-6715
卷号42期号:26页码:4794-4823
摘要

In spatio-temporal epidemiological analysis, it is of critical importance to identify the significant covariates and estimate the associated time-varying effects on the health outcome. Due to the heterogeneity of spatio-temporal data, the subsets of important covariates may vary across space and the temporal trends of covariate effects could be locally different. However, many spatial models neglected the potential local variation patterns, leading to inappropriate inference. Thus, this article proposes a flexible Bayesian hierarchical model to simultaneously identify spatial clusters of regression coefficients with common temporal trends, select significant covariates for each spatial group by introducing binary entry parameters and estimate spatio-temporally varying disease risks. A multistage strategy is employed to reduce the confounding bias caused by spatially structured random components. A simulation study demonstrates the outperformance of the proposed method, compared with several alternatives based on different assessment criteria. The methodology is motivated by two important case studies. The first concerns the low birth weight incidence data in 159 counties of Georgia, USA, for the years 2007 to 2018 and investigates the time-varying effects of potential contributing covariates in different cluster regions. The second concerns the circulatory disease risks across 323 local authorities in England over 10 years and explores the underlying spatial clusters and associated important risk factors.

关键词Bayesian hierarchical model spatial clustering spatial confounding problem spatio-temporal modeling variable selection
DOI10.1002/sim.9889
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematical & Computational BiologyPublic, Environmental & Occupational Health ; Medical Informatics ; Research & Experimental Medicine ; Mathematics
WOS类目Mathematical & Computational Biology ; Public, Environmental & Occupational HealthMedical InformaticsMedicine, Research & Experimental ; Statistics & Probability
WOS记录号WOS:001065128600001
Scopus入藏号2-s2.0-85169422785
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10904
专题理工科技学院
通讯作者Tian, Maozai
作者单位
1.School of Statistics,University of International Business and Economics,Beijing,China
2.Mathematical Sciences,Brunel University,Uxbridge, London,United Kingdom
3.Research Center for Mathematics,Beijing Normal University,Zhuhai,China
4.Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College,Zhuhai,China
5.School of Business and Economics,Humboldt-Universität zu Berlin,Berlin,Germany
6.Center for Applied Statistics,School of Statistics,Renmin University of China,Beijing,China
推荐引用方式
GB/T 7714
Ma, Shaopei,Yu, Keming,Tang, Man laiet al. A Bayesian multistage spatio-temporally dependent model for spatial clustering and variable selection[J]. Statistics in Medicine, 2023, 42(26): 4794-4823.
APA Ma, Shaopei, Yu, Keming, Tang, Man lai, Pan, Jianxin, Härdle, Wolfgang Karl, & Tian, Maozai. (2023). A Bayesian multistage spatio-temporally dependent model for spatial clustering and variable selection. Statistics in Medicine, 42(26), 4794-4823.
MLA Ma, Shaopei,et al."A Bayesian multistage spatio-temporally dependent model for spatial clustering and variable selection". Statistics in Medicine 42.26(2023): 4794-4823.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ma, Shaopei]的文章
[Yu, Keming]的文章
[Tang, Man lai]的文章
百度学术
百度学术中相似的文章
[Ma, Shaopei]的文章
[Yu, Keming]的文章
[Tang, Man lai]的文章
必应学术
必应学术中相似的文章
[Ma, Shaopei]的文章
[Yu, Keming]的文章
[Tang, Man lai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。