科研成果详情

题名The value of using big data technologies in computational social science
作者
发表日期2014-08-04
会议名称3rd ASE International Conference on Big Data Science and Computing, BIGDATASCIENCE 2014
会议录名称ACM International Conference Proceeding Series
卷号04-07-August-2014
会议日期August 4-7, 2014
会议地点Beijing
摘要

The discovery of phenomena in social networks has prompted renewed interests in the field. Data in social networks however can be massive, requiring scalable Big Data architecture. Conversely, research in Big Data needs the volume and velocity of social media data for testing its scalability. Not only so, appropriate data processing and mining of acquired datasets involve complex issues in the variety, veracity, and variability of the data, after which visualisation must occur before we can see fruition in our efforts. This article presents topical, multimodal, and longitudinal social media datasets from the integration of various scalable open source technologies. The article details the process that led to the discovery of social information landscapes within the Twitter social network, highlighting the experience of dealing with social media datasets, using a funneling approach so that data becomes manageable. The article demonstrated the feasibility and value of using scalable open source technologies for acquiring massive, connected datasets for research in the social sciences.

关键词Computational social science Data mining Open source Social network analysis Twitter
DOI10.1145/2640087.2644162
URL查看来源
语种英语English
Scopus入藏号2-s2.0-84986001286
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11011
专题个人在本单位外知识产出
通讯作者Ch'ng, Eugene
作者单位
School of Computer Science,University of Nottingham Ningbo China,Zhejiang Ningbo,199 Taikang East Road,315100,China
推荐引用方式
GB/T 7714
Ch'ng, Eugene. The value of using big data technologies in computational social science[C], 2014.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ch'ng, Eugene]的文章
百度学术
百度学术中相似的文章
[Ch'ng, Eugene]的文章
必应学术
必应学术中相似的文章
[Ch'ng, Eugene]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。